论文标题
渐进更新引导的相互依存网络,用于脱去
Progressive Update Guided Interdependent Networks for Single Image Dehazing
论文作者
论文摘要
具有不同品种的雾兹的图像通常对去悬式构成重大挑战。因此,通过估计与该品种相关的雾霾参数的指导将是有益的,它们的逐步更新随着雾霾的减少将有效地进行。为此,我们提出了一个多网络的飞行框架,其中包含新颖的相互依存的DHAZ和HAZE参数更新程序网络,以渐进的方式运行。首先使用允许颜色铸造处理的专用卷积网络估算雾兹参数,传输图和大气光。然后,使用估计的参数来指导我们的飞行模块,其中估计值通过新型卷积网络逐渐更新。更新是通过逐步向依赖的网络共同进行的,该网络调用了步骤依赖性。联合渐进更新和除去逐渐改变了雾糊状参数值,以实现有效的飞行。通过不同的研究,我们的飞行框架被证明比图像到图像映射和基于预定义的雾化形成模型更有效。还发现该框架能够处理各种朦胧的条件,以不同类型和颜色铸件的不同类型和数量。我们的飞行框架是定性和定量发现的,在多种雾霾条件下的多个数据集的合成和现实世界中的朦胧图像上的最先进。
Images with haze of different varieties often pose a significant challenge to dehazing. Therefore, guidance by estimates of haze parameters related to the variety would be beneficial, and their progressive update jointly with haze reduction will allow effective dehazing. To this end, we propose a multi-network dehazing framework containing novel interdependent dehazing and haze parameter updater networks that operate in a progressive manner. The haze parameters, transmission map and atmospheric light, are first estimated using dedicated convolutional networks that allow color-cast handling. The estimated parameters are then used to guide our dehazing module, where the estimates are progressively updated by novel convolutional networks. The updating takes place jointly with progressive dehazing using a network that invokes inter-step dependencies. The joint progressive updating and dehazing gradually modify the haze parameter values toward achieving effective dehazing. Through different studies, our dehazing framework is shown to be more effective than image-to-image mapping and predefined haze formation model based dehazing. The framework is also found capable of handling a wide variety of hazy conditions wtih different types and amounts of haze and color casts. Our dehazing framework is qualitatively and quantitatively found to outperform the state-of-the-art on synthetic and real-world hazy images of multiple datasets with varied haze conditions.