论文标题

多体浮标模型中Feynman历史的本地配对

Local pairing of Feynman histories in many-body Floquet models

论文作者

Garratt, S. J., Chalker, J. T.

论文摘要

我们在一个空间维度中使用Floquet量子电路研究了多体量子动力学,作为具有支持千古相的局部相互作用的简单示例。物理特性可以用Feynman历史上的多个总和来表达,对于这些模型而言,这是Fock空间中的路径或多体轨道。这种总和的自然简化是对角线的近似,其中保留的唯一术语是每个路径与伴侣配对的伴侣,该伴侣携带复合物重量。我们确定对角近似所具有的状态以及领先校正的性质。我们专注于光谱形式(SFF)的行为和本地运算符的基质元素的行为,平均在随机电路的集合上平均,与随机矩阵理论(RMT)的预测和本征态热层化假设(ETH)进行了比较。我们表明,属性是长时间以对轨道总和的贡献,在该轨道总和中,其中每个轨道与对角线近似中的局部配对,但在大系统中,这些贡献由许多空间域组成,由许多空间域组成,在相邻域中具有不同的本地配对。这些域的存在反映在SFF与RMT预测的偏差中,以及与ETH预测相关的矩阵元素相关。两种类型的偏差与系统大小不同。我们证明,我们对轨道配对域的物理图片在传递矩阵的光谱特性中具有精确的对应关系,该矩阵沿空间方向起作用,以生成集合平均的SFF。此外,我们发现第二类型的SFF的第二类控制非高斯波动的域。这些结构域被与纠缠膜有关的壁隔开,已知是量子信息的争夺。

We study many-body quantum dynamics using Floquet quantum circuits in one space dimension as simple examples of systems with local interactions that support ergodic phases. Physical properties can be expressed in terms of multiple sums over Feynman histories, which for these models are paths or many-body orbits in Fock space. A natural simplification of such sums is the diagonal approximation, where the only terms that are retained are ones in which each path is paired with a partner that carries the complex conjugate weight. We identify the regime in which the diagonal approximation holds, and the nature of the leading corrections to it. We focus on the behaviour of the spectral form factor (SFF) and of matrix elements of local operators, averaged over an ensemble of random circuits, making comparisons with the predictions of random matrix theory (RMT) and the eigenstate thermalisation hypothesis (ETH). We show that properties are dominated at long times by contributions to orbit sums in which each orbit is paired locally with a conjugate, as in the diagonal approximation, but that in large systems these contributions consist of many spatial domains, with distinct local pairings in neighbouring domains. The existence of these domains is reflected in deviations of the SFF from RMT predictions, and of matrix element correlations from ETH predictions; deviations of both kinds diverge with system size. We demonstrate that our physical picture of orbit-pairing domains has a precise correspondence in the spectral properties of a transfer matrix that acts in the space direction to generate the ensemble-averaged SFF. In addition, we find that domains of a second type control non-Gaussian fluctuations of the SFF. These domains are separated by walls which are related to the entanglement membrane, known to characterise the scrambling of quantum information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源