论文标题

一种用于建模城市土地使用停车时间的机器学习方法

A Machine Learning Approach for Modelling Parking Duration in Urban Land-use

论文作者

Parmar, Janak, Das, Pritikana, Dave, Sanjaykumar

论文摘要

在快速发展的发展中国家,停车是不可避免的问题。越来越多的车辆需要越来越多的城市土地才能分配用于停车。但是,已经对印度等发展中国家的停车问题提出了一点关注。这项研究提出了一个模型,用于分析汽车使用者的社会经济和旅行特征对停车持续时间的影响。具体而言,人工神经网络(ANN)被部署以捕获驾驶员特征和停车时间之间的相互关系。 ANN在学习和识别参数之间的连接方面具有高效,以最佳预测结果。由于,由于其黑匣子性质,ANN的效用受到了严重限制,因此该研究涉及使用Garson算法和局部可解释的模型 - 不合Snostic解释(LIME)进行模型解释。 Lime通过用开发的可解释模型在本地近似任何分类来显示任何分类的预测。这项研究基于通过面试调查在现场收集的微型数据,考虑了两种土地 - 办公室企业和市场/购物。结果表明,通过石灰预测的概率较高,因此,该方法可以普遍存在。此外,根据两种土地效果的结果讨论了政策含义。这项独特的研究可能会导致增强的停车政策和管理层以实现可持续性目标。

Parking is an inevitable issue in the fast-growing developing countries. Increasing number of vehicles require more and more urban land to be allocated for parking. However, a little attention has been conferred to the parking issues in developing countries like India. This study proposes a model for analysing the influence of car users' socioeconomic and travel characteristics on parking duration. Specifically, artificial neural networks (ANNs) is deployed to capture the interrelationship between driver characteristics and parking duration. ANNs are highly efficient in learning and recognizing connections between parameters for best prediction of an outcome. Since, utility of ANNs has been critically limited due to its Black Box nature, the study involves the use of Garson algorithm and Local interpretable model-agnostic explanations (LIME) for model interpretations. LIME shows the prediction for any classification, by approximating it locally with the developed interpretable model. This study is based on microdata collected on-site through interview surveys considering two land-uses: office-business and market/shopping. Results revealed the higher probability of prediction through LIME and therefore, the methodology can be adopted ubiquitously. Further, the policy implications are discussed based on the results for both land-uses. This unique study could lead to enhanced parking policy and management to achieve the sustainability goals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源