论文标题

随机界面的热传导中的量子多纹理

Quantum multifractality in thermal conduction across random interfaces

论文作者

Zhu, Taishan, Romano, Giuseppe, Yang, Lina, Ostoja-Starzewski, Martin, Grossman, Jeffrey C.

论文摘要

随机界面的自我疗法形态控制着它们在摩擦学,地质,(光学)电气和生物学应用中的功能。但是,对能量载体或通常的经典/量子波如何与结构不规则性相互作用的知识仍然不完整。在这项工作中,我们通过在二维六边形晶格上表现出不同相关函数的随机界面研究振动能传输。我们表明,原子量表处的随机接口是在几何分形上填充的cantor复合材料,因此是多重分形的,并使用原子方法计算了其量化的电导率。我们获得了一种普遍的缩放定律,其中包含质量扰动的自相似性,以及通过分形维度量化的结构不规则性的指数缩放。多重分子性质和cantor复合图像也可以扩展到跨随机界面的电荷和光子传输。

Self-affine morphology of random interfaces governs their functionalities across tribological, geological, (opto-)electrical and biological applications. However, the knowledge of how energy carriers or generally classical/quantum waves interact with structural irregularity is still incomplete. In this work, we study vibrational energy transport through random interfaces exhibiting different correlation functions on the two-dimensional hexagonal lattice. We show that random interfaces at the atomic scale are Cantor composites populated on geometrical fractals, thus multifractals, and calculate their quantized conductance using atomistic approaches. We obtain a universal scaling law, which contains self-similarity for mass perturbation, and exponential scaling of structural irregularity quantified by fractal dimension. The multifractal nature and Cantor-composite picture may also be extendable to charge and photon transport across random interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源