论文标题

形状一致的2D关键点估计在域移位下

Shape Consistent 2D Keypoint Estimation under Domain Shift

论文作者

Vasconcelos, Levi O., Mancini, Massimiliano, Boscaini, Davide, Bulo, Samuel Rota, Caputo, Barbara, Ricci, Elisa

论文摘要

基于深度体系结构的最新无监督域适应方法不仅在传统的分类任务中表现出了显着的性能,而且在涉及结构化预测的更复杂的问题中(例如语义分割,深度估计)。按照这种趋势,在本文中,我们提出了一个新颖的深层适应框架,用于估算域移动下的关键点},即训练(源)和测试(目标)图像在视觉外观方面显着差异。我们的方法无缝结合了三个不同的组成部分:特征对齐,对抗训练和自学。具体而言,我们的深度体系结构从特定于域的分布对准层中利用了在特征级别执行目标适应性。此外,提出了一种新颖的损失,该损失结合了一个对抗性项,以确保输出空间中的预测和几何一致性项,以确保目标样本与其扰动版本之间的相干预测。我们对三个公开基准进行的广泛的实验评估表明,我们的方法在2D关键点预测任务中优于最先进的域适应方法。

Recent unsupervised domain adaptation methods based on deep architectures have shown remarkable performance not only in traditional classification tasks but also in more complex problems involving structured predictions (e.g. semantic segmentation, depth estimation). Following this trend, in this paper we present a novel deep adaptation framework for estimating keypoints under domain shift}, i.e. when the training (source) and the test (target) images significantly differ in terms of visual appearance. Our method seamlessly combines three different components: feature alignment, adversarial training and self-supervision. Specifically, our deep architecture leverages from domain-specific distribution alignment layers to perform target adaptation at the feature level. Furthermore, a novel loss is proposed which combines an adversarial term for ensuring aligned predictions in the output space and a geometric consistency term which guarantees coherent predictions between a target sample and its perturbed version. Our extensive experimental evaluation conducted on three publicly available benchmarks shows that our approach outperforms state-of-the-art domain adaptation methods in the 2D keypoint prediction task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源