论文标题

Sophus谎言的骨头

The Bones of Sophus Lie

论文作者

Lewis, Clinton L.

论文摘要

波函数的量规协方差衍生物在仪表理论中无处不在,并且使用相关的量规变换,它定义了与外部磁场相互作用的带电电流,例如电磁场施加的Lorentz力。它是量规协变量的导数,它定义了外部场对波函数的作用。本文构建了量规协方差衍生物,然后使用拉格朗日力学的优雅框架从一般的拉格朗日派生中得出两个``分化方程式'',一个``divergence requation'',一个是适用于带电电流的,另一个适用于能量摩托车。学生将欣赏仅使用矩阵,线性变换,外部场和部分衍生物的经典波函数的量规协变量的构建。更不寻常的是使用协方差的原理,而不是群体理论作为构建中的指导,但结果完全相同。优势是与张量的坐标协方差相似的。得出这两个差异的细节为理解量规协方差衍生物,基本的非亚伯利亚谎言代数,其应用于构建Lagrangians的应用以及由此带电的当前和能量弹药的定义的细节提供了动力和途径。所有结果均已普遍为弯曲的时空。

The gauge covariant derivative of a wave function is ubiquitous in gauge theory, and with associated gauge transformations it defines charged currents interacting with external fields, such as the Lorentz force exerted by an electromagnetic field. It is the gauge covariant derivative which defines how an external field acts upon the wave function. This paper constructs the gauge covariant derivative, then uses the elegant framework of Lagrangian mechanics to derive two ``divergence equations'' from a general Lagrangian, one applying to the charged current, the other to energy-momentum. The student will appreciate the construction of the gauge covariant derivative of a classical wave function using only matrices, linear transformations, external fields, and partial derivatives. More unusual is using the principle of covariance, rather than group theory as guidance in the construction, but with exactly the same result. Advantage is taken of the close analogy with coordinate covariance of tensors. The details of deriving these two divergences provides motivation and a path to understanding the gauge covariant derivative, the underlying non-abelian Lie algebra, its application to building Lagrangians, and the resulting definitions of charged current and energy-momentum. All results are generalized to curved space-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源