论文标题

定义和评估公平的自然语言生成

Defining and Evaluating Fair Natural Language Generation

论文作者

Yeo, Catherine, Chen, Alyssa

论文摘要

我们的工作着重于句子完成的自然语言生成(NLG)任务中出现的偏见。在本文中,我们为NLG介绍了一个公平性的框架,然后在两种最先进的语言模型中评估性别偏见。我们的分析为NLG和经验证据中现有语言生成模型嵌入性别偏见提供了理论表述。

Our work focuses on the biases that emerge in the natural language generation (NLG) task of sentence completion. In this paper, we introduce a framework of fairness for NLG followed by an evaluation of gender biases in two state-of-the-art language models. Our analysis provides a theoretical formulation for biases in NLG and empirical evidence that existing language generation models embed gender bias.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源