论文标题

使用微博的文本进行社交媒体取证的文本识别

Writer Identification Using Microblogging Texts for Social Media Forensics

论文作者

Alonso-Fernandez, Fernando, Belvisi, Nicole Mariah Sharon, Hernandez-Diaz, Kevin, Muhammad, Naveed, Bigun, Josef

论文摘要

建立在线文本的作者身份是对抗网络犯罪的基础。不幸的是,文本长度在某些平台上受到限制,从而使挑战更加困难。我们旨在确定限制在140个字符的Twitter消息的作者身份。我们评估了流行的风格测量功能,广泛用于文学分析,以及特定的Twitter功能,例如URL,主题标签,答复或报价。我们分别使用两个数据库,分别与93和3957作者使用。我们测试了各种尺寸的作者集和每个作者的不同培训/测试文本。通过自动选择的功能组合进一步提高了性能。有了大量的培训推文(> 500),即使有数千名作者,也只能获得良好的精度(排名5> 80%),只有几十个测试推文。随着样本量较小(10-20个培训推文),搜索空间可以减少9-15%,同时使候选人中正确的作者获得正确的作者的机会很高。在这种情况下,自动归因可以为可疑搜索中的专家节省大量时间。为了完整性,我们报告验证结果。由于培训/测试推文很少,EER超过20-25%,如果有数百种培训推文,则降低到<15%。我们还量化了所采用特征的计算复杂性和时间持续性。

Establishing authorship of online texts is fundamental to combat cybercrimes. Unfortunately, text length is limited on some platforms, making the challenge harder. We aim at identifying the authorship of Twitter messages limited to 140 characters. We evaluate popular stylometric features, widely used in literary analysis, and specific Twitter features like URLs, hashtags, replies or quotes. We use two databases with 93 and 3957 authors, respectively. We test varying sized author sets and varying amounts of training/test texts per author. Performance is further improved by feature combination via automatic selection. With a large number of training Tweets (>500), a good accuracy (Rank-5>80%) is achievable with only a few dozens of test Tweets, even with several thousands of authors. With smaller sample sizes (10-20 training Tweets), the search space can be diminished by 9-15% while keeping a high chance that the correct author is retrieved among the candidates. In such cases, automatic attribution can provide significant time savings to experts in suspect search. For completeness, we report verification results. With few training/test Tweets, the EER is above 20-25%, which is reduced to < 15% if hundreds of training Tweets are available. We also quantify the computational complexity and time permanence of the employed features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源