论文标题
加权热核估计:Kolmogorov距离的收敛速度
Weighted heat kernel estimates: rate of convergence in Kolmogorov distance
论文作者
论文摘要
本文关注的是在晶格$ \ mathbb {z}^d $的随机环境上随机步行。通过对数Sobolev不等式的形式来分析该模型。我们假设环境是随机变量是独立的,并且分布相同。在这里,我们给出了以维度为dimension $ d \ geq 3 $ a Berry-Esseen上限的非对角性随机矩阵的热内核估计值,并具有收敛速度$ t^{ - \ frac {1} {10} {10}}} $。
This paper is concerned about random walks on random environments in the lattice $\mathbb{Z}^d$. This model is analyzed through ergodicity in the form of the logarithmic Sobolev inequality. We assume that the environments are random variables being independent and identically distributed. Here, we give heat kernel estimates for non-diagonal random matrices leading in dimension $d\geq 3$ a Berry-Esseen upper bound with a rate of convergence $t^{-\frac{1}{10}}$.