论文标题

在Erds和Graham的Diophantine方程式上

On a Diophantine equation of Erdős and Graham

论文作者

Tengely, Szabolcs, Ulas, Maciej, Zygadło, Jakub

论文摘要

我们研究了二芬太丁方程\ begin {方程*} \ frac {n} {2^{n}} = \ sum_ {i = 1}^{k} \ frac {a__ {a_ {a_ {i}}}} a_ {1},\ ldots,a_ {k} $满足条件$ k \ geq 2 $和$ a_ {i} <a_ {i+1} $ for $ i = 1,\ ldots,k-1 $。在Erdős和Graham的专着中提到了上述七磷(多项式指数类型),其中有几个问题。其中一些问题已经由Borwein和Loring回答。我们扩展了他们的工作,并调查了Erds和Graham方程的其他方面。首先,我们获得了仅以$ k $给出的值$ a_ {k} $的上限。这意味着,使用固定的$ k $,我们的方程在$ n,a_ {1},\ ldots,a_ {k} $中只有有限的许多解决方案。此外,我们构建了一个无限的$ \ cal {k} $,因此对于\ cal {k} $中的每个$ k \ cal,所考虑的方程式至少具有五个解决方案。作为我们发现的应用,我们列举了$ k \ leq 8 $的所有方程解决方案。此外,通过应用贪婪的算法,我们扩展了borwein和Loring计算,并检查每个$ n \ leq 10^4 $的值$ k $的值为$ k $,因此所考虑的方程式在整数中具有$ n+1 = a_ {1} = a_ {1} <a__ {1} <a_ {2} <a_ {2} <\ ldots <\ ldots <a___ {根据我们的数值计算,我们制定了一些进一步的问题和猜想。

We study solvability of the Diophantine equation \begin{equation*} \frac{n}{2^{n}}=\sum_{i=1}^{k}\frac{a_{i}}{2^{a_{i}}}, \end{equation*} in integers $n, k, a_{1},\ldots, a_{k}$ satisfying the conditions $k\geq 2$ and $a_{i}<a_{i+1}$ for $i=1,\ldots,k-1$. The above Diophantine equation (of polynomial-exponential type) was mentioned in the monograph of Erdős and Graham, where several questions were stated. Some of these questions were already answered by Borwein and Loring. We extend their work and investigate other aspects of Erdős and Graham equation. First of all, we obtain the upper bound for the value $a_{k}$ given in terms of $k$ only. This mean, that with fixed $k$ our equation has only finitely many solutions in $n, a_{1},\ldots, a_{k}$. Moreover, we construct an infinite set $\cal{K}$, such that for each $k\in\cal{K}$, the considered equation has at least five solutions. As an application of our findings we enumerate all solutions of the equation for $k\leq 8$. Moreover, by applying greedy algorithm, we extend Borwein and Loring calculations and check that for each $n\leq 10^4$ there is a value of $k$ such that the considered equation has a solution in integers $n+1=a_{1}<a_{2}<\ldots <a_{k}$. Based on our numerical calculations we formulate some further questions and conjectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源