论文标题
RIS授权多用户误差无线通信的频道估计
Channel Estimation for RIS-Empowered Multi-User MISO Wireless Communications
论文作者
论文摘要
由于其快速和低功率配置,可重新配置的智能表面(RISS)最近被视为将来无线网络的节能解决方案,这在实现大规模连通性和低延迟通信方面具有增加的潜力。基于RIS的系统中的准确且低空的通道估计是通常的RIS单元元素及其独特的硬件约束,这是最关键的挑战之一。在本文中,我们专注于RIS授权的多用户多用户多输入单输出(MISO)上行链路通信系统的上行链路,并根据并行因子分解提出了一个通道估计框架,以展开所得的级联通道模型。我们为基站和RI之间的渠道以及RIS和用户之间的渠道提供了两种迭代估计算法。一个基于交替的最小二乘(ALS),而另一个使用矢量近似消息传递到迭代的迭代中,从估计的向量重建了两个未知的通道。为了从理论上评估基于ALS的算法的性能,我们得出了其估计Cramér-Rao Bound(CRB)。我们还通过估计的通道和基本站的不同预码方案讨论了可实现的总和率计算。我们广泛的仿真结果表明,我们的算法表现优于基准方案,并且ALS技术可实现CRB。还证明,使用估计通道的总和率总是在各种设置下达到完美通道的总和,从而验证了提出的估计算法的有效性和鲁棒性。
Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks due to their fast and low-power configuration, which has increased potential in enabling massive connectivity and low-latency communications. Accurate and low-overhead channel estimation in RIS-based systems is one of the most critical challenges due to the usually large number of RIS unit elements and their distinctive hardware constraints. In this paper, we focus on the uplink of a RIS-empowered multi-user Multiple Input Single Output (MISO) uplink communication systems and propose a channel estimation framework based on the parallel factor decomposition to unfold the resulting cascaded channel model. We present two iterative estimation algorithms for the channels between the base station and RIS, as well as the channels between RIS and users. One is based on alternating least squares (ALS), while the other uses vector approximate message passing to iteratively reconstruct two unknown channels from the estimated vectors. To theoretically assess the performance of the ALS-based algorithm, we derived its estimation Cramér-Rao Bound (CRB). We also discuss the downlink achievable sum rate computation with estimated channels and different precoding schemes for the base station. Our extensive simulation results show that our algorithms outperform benchmark schemes and that the ALS technique achieves the CRB. It is also demonstrated that the sum rate using the estimated channels always reach that of perfect channels under various settings, thus, verifying the effectiveness and robustness of the proposed estimation algorithms.