论文标题
在Parton淋浴中结合单部分和双parton散射
Combining single and double parton scatterings in a parton shower
论文作者
论文摘要
双方散射(DPS)过程,其中两个质子的扰动$ 1 \ to2 $分裂,与环校正到单个Parton散射(SPS)。 DPS的任何基本理论待遇都需要解决这个双重计数问题。在本文中,我们增加了DPS dps的蒙特卡洛模拟,以便能够生成与组合SPS+DPS相对应而无需双重计数的运动学分布。为了实现这一目标,我们制定了Diehl等人引入的减法方案的完全差异版本。 (JHEP 06(2017)083)。淋浴附着在减法术语上,并将其与Dshower DPS淋浴以及通常的SPS淋浴结合使用。我们在$ \ mathrm {z}^0 \ mathrm {z}^0 $生产的上下文中对该新算法进行了概念验证研究。一旦包含了减法项,我们就会验证结果并不在很大程度上取决于人工“ DPS-SPS划分”比例$ν$。作为新算法开发的一部分,我们改善了在DPS淋浴(和减法项)中$ 1 \ to2 $拆分的运动学,使女儿党可以具有相对的横向动量。研究了$ 1 \ to2 $拆分中的横向配置文件的几个合理选择。我们发现,许多运动学分布并未受到选择的强烈影响,尽管我们确实观察到两个玻色子的横向动量的区域差异很小。
Double parton scattering (DPS) processes in which there is a perturbative $1\to2$ splitting in both protons overlap with loop corrections to single parton scattering (SPS). Any fundamental theoretical treatment of DPS needs to address this double-counting issue. In this paper, we augment our Monte-Carlo simulation of DPS, dShower, to be able to generate kinematic distributions corresponding to the combination SPS+DPS without double counting. To achieve this, we formulate a fully-differential version of the subtraction scheme introduced in Diehl et al. (JHEP 06 (2017) 083). A shower is attached to the subtraction term, and this is combined with the dShower DPS shower along with the usual SPS shower. We perform a proof-of-concept study of this new algorithm in the context of $\mathrm{Z}^0\mathrm{Z}^0$ production. Once the subtraction term is included, we verify that the results do not depend strongly on the artificial "DPS-SPS demarcation" scale $ν$. As part of the development of the new algorithm, we improve the kinematics of the $1\to2$ splitting in the DPS shower (and subtraction term), allowing the daughter partons to have a relative transverse momentum. Several reasonable choices for the transverse profile in the $1\to2$ splitting are studied. We find that many kinematic distributions are not strongly affected by the choice, although we do observe some differences in the region where the transverse momenta of both bosons are small.