论文标题

在建设性和谓词无数基础中的领域理论

Domain Theory in Constructive and Predicative Univalent Foundations

论文作者

de Jong, Tom, Escardó, Martín Hötzel

论文摘要

我们在没有Voevodsky的大小公理的情况下发展了域理论。在此方向上的先前工作中,我们基于有名完整的POSET(DCPO)构建了PCF的Scott模型,并证明了其计算充分性。在这里,我们进一步考虑代数和连续的DCPO,并构建了Scott的$ d_ \ infty $型号的$λ$ -calculus。处理谓词基础中尺寸问题的一种常见方法是与信息系统,抽象基础或形式拓扑,而不是DCPO,而不是近似关系,而不是Scott的连续功能。相反,我们接受DCPO可能很大,并且可以与类型的Univers一起解决此问题。例如,在PCF的Scott模型中,DCPO在第二个宇宙中具有载体$ \ Mathcal {u} _1 $和有定向家庭的Suprema在第一个宇宙$ \ Mathcal {u} _0 $中具有索引类型。以通常的方式将Poset视为类别,我们可以说这些DCPO很大,但本地很小,并且具有小的过滤colimits。对于代数DCPO,为了处理尺寸问题,我们继续模仿可访问类别的定义。有了这样的定义,我们对斯科特的$ d_ \ infty $的构建再次提供了一个大型的,本地的,代数的DCPO,带有小的定向性。

We develop domain theory in constructive univalent foundations without Voevodsky's resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, based on directed complete posets (dcpos). Here we further consider algebraic and continuous dcpos, and construct Scott's $D_\infty$ model of the untyped $λ$-calculus. A common approach to deal with size issues in a predicative foundation is to work with information systems or abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. Here we instead accept that dcpos may be large and work with type universes to account for this. For instance, in the Scott model of PCF, the dcpos have carriers in the second universe $\mathcal{U}_1$ and suprema of directed families with indexing type in the first universe $\mathcal{U}_0$. Seeing a poset as a category in the usual way, we can say that these dcpos are large, but locally small, and have small filtered colimits. In the case of algebraic dcpos, in order to deal with size issues, we proceed mimicking the definition of accessible category. With such a definition, our construction of Scott's $D_\infty$ again gives a large, locally small, algebraic dcpo with small directed suprema.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源