论文标题

在$ \ mathbb p^3 $的Legendrian曲线上

On Legendrian curves in $\mathbb P^3$

论文作者

Lvovski, Serge

论文摘要

我们表明,如果光滑的投射曲线$ c \ subset \ mathbb p^3 $(在代数封闭的特征零字段上)是关于接触结构的传奇人物(众所周知,$ \ mathbb p^3 $上的触点结构是属于线性自动化的独特之处,而不是$ c $ c $ lineare flase flase linear linear forliane for linear for linear for linear fustractian for linear for linear fustractian fust linort in $ c'\ subset \ mathbb p^n $,$ n> 3 $,其中$ c'$不在超平面上),然后$ c $是扭曲的立方体或一条线。

We show that if a smooth projective curve $C\subset\mathbb P^3$ (over an algebraically closed field of characteristic zero) is Legendrian with respect to a contact structure (it is well known that a contact structure on $\mathbb P^3$ is unique up to a linear automorphism) and $C$ is linearly normal (i.e., not an isomorphic linear projection of a smooth curve $C'\subset\mathbb P^n$, $n>3$, where $C'$ does not lie in a hyperplane) then $C$ is a twisted cubic or a line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源