论文标题
自适应稳定有限元素:土地材料中压实带的持续分析
Adaptive stabilized finite elements: Continuation analysis of compaction banding in geomaterials
论文作者
论文摘要
在压缩性蠕变下,最近提出了经历内部传质过程的粘膜塑料,以适应奇异的cNoidal波溶液,作为固定波限制的材料不稳定性。当加载速率明显快于材料扩散内部扰动并导致局部故障特征(例如裂纹和压实带)的能力时,这些不稳定性就会出现。这种类型的溶液通常在流体中发现,具有强大的非线性和周期性模式。由于解决方案的奇异性,该理论的适用性目前受到限制。此外,有效的数值工具需要适当的正则化,以克服奇异性引起的挑战。我们专注于使用非线性方法在最近的自适应稳定有限元方法上构建管理方程的数值处理。该方法提供了一个残留的表示,以驱动自适应网格细化,这是当前问题的特别有用功能。我们将与分析和标准有限元解决方案进行比较,以证明我们的方法的性能。然后,我们研究了问题的扩散比,主要参数的敏感性,并识别多个可能的解决方案,并具有多个应力峰。最后,我们显示了所有溶液之间峰之间间距的演变,该溶液与该参数的函数。
Under compressive creep, visco-plastic solids experiencing internal mass transfer processes have been recently proposed to accommodate singular cnoidal wave solutions, as material instabilities at the stationary wave limit. These instabilities appear when the loading rate is significantly faster than the capability of the material to diffuse internal perturbations and lead to localized failure features (e.g., cracks and compaction bands). This type of solution, generally found in fluids, has strong nonlinearities and periodic patterns. Due to the singular nature of the solutions, the applicability of the theory is currently limited. Additionally, effective numerical tools require proper regularization to overcome the challenges that singularity induces. We focus on the numerical treatment of the governing equation using a nonlinear approach building on a recent adaptive stabilized finite element method. This method provides a residual representation to drive adaptive mesh refinement, a particularly useful feature for the problem at hand. We compare against analytical and standard finite element solutions to demonstrate the performance of our approach. We then investigate the sensitivity of the diffusivity ratio, main parameter of the problem, and identify multiple possible solutions, with multiple stress peaks. Finally, we show the evolution of the spacing between peaks for all solutions as a function of that parameter.