论文标题

基于区域的对象检测的分层上下文嵌入

Hierarchical Context Embedding for Region-based Object Detection

论文作者

Chen, Zhao-Min, Jin, Xin, Zhao, Borui, Wei, Xiu-Shen, Guo, Yanwen

论文摘要

最先进的两阶段对象检测器将分类器应用于一组稀疏的对象建议,依赖于Roipool或Roialign作为输入提取的区域特征。尽管区域的特征与提案位置保持良好状态,但仍缺乏关键的上下文信息,这对于滤除嘈杂的背景检测所需的必要条件以及识别没有独特外观的对象。为了解决此问题,我们提出了一个简单但有效的层次上下文嵌入(HCE)框架,可以用作插件组件,以通过挖掘上下文提示来促进一系列基于区域的检测器的分类能力。具体来说,要推进与上下文相关的对象类别的识别,我们提出了一个图像级的分类嵌入模块,该模块利用整体图像级上下文来学习对象级别的概念。然后,通过利用整个图像和感兴趣的区域下的层次嵌入式上下文信息来生成新颖的ROI功能,这些信息也与常规的ROI特征互补。此外,为了充分利用我们的层次上下文ROI功能,我们提出了早期和融合策略(即功能融合和置信融合),可以将其组合起来以提高基于区域检测器的分类精度。全面的实验表明,我们的HCE框架是灵活的且可推广的,从而在包括FPN,Cascade R-CNN和Mask R-CNN的各种基于区域的探测器上进行了显着改进。

State-of-the-art two-stage object detectors apply a classifier to a sparse set of object proposals, relying on region-wise features extracted by RoIPool or RoIAlign as inputs. The region-wise features, in spite of aligning well with the proposal locations, may still lack the crucial context information which is necessary for filtering out noisy background detections, as well as recognizing objects possessing no distinctive appearances. To address this issue, we present a simple but effective Hierarchical Context Embedding (HCE) framework, which can be applied as a plug-and-play component, to facilitate the classification ability of a series of region-based detectors by mining contextual cues. Specifically, to advance the recognition of context-dependent object categories, we propose an image-level categorical embedding module which leverages the holistic image-level context to learn object-level concepts. Then, novel RoI features are generated by exploiting hierarchically embedded context information beneath both whole images and interested regions, which are also complementary to conventional RoI features. Moreover, to make full use of our hierarchical contextual RoI features, we propose the early-and-late fusion strategies (i.e., feature fusion and confidence fusion), which can be combined to boost the classification accuracy of region-based detectors. Comprehensive experiments demonstrate that our HCE framework is flexible and generalizable, leading to significant and consistent improvements upon various region-based detectors, including FPN, Cascade R-CNN and Mask R-CNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源