论文标题

通过网络重新配置在异质多机器人系统中进行弹性监测

Resilient Monitoring in Heterogeneous Multi-robot Systems through Network Reconfiguration

论文作者

Ramachandran, Ragesh K., Pierpaoli, Pietro, Egerstedt, Magnus, Sukhatme, Gaurav S.

论文摘要

我们为在资源失败的情况下提出了一个在网络异质的多机器人团队中的弹性框架。团队中的每个机器人都配备了与邻居共享的资源。此外,团队中的每个机器人都执行一个任务,其性能取决于其访问权限的资源。当特定机器人上的资源变得不可用(例如,相机停止运行)时,团队可以最佳地重新配置其通信网络,以便受到故障影响的机器人可以继续其任务。我们专注于监视任务,在该任务中,机器人单独估计外源过程的状态。我们通过定义一个新的强可观察性概念来编码机器人资源损失对团队监视性能的端到端效应 - \ textit {单跳可观察性}。通过抽象{低级}个体资源通过单跳的可观察性对任务绩效产生的影响,我们的框架会导致团队中信息流的原则性重新配置,以有效地通过来自另一个机器人的信息有效地替换了一个机器人的丢失资源,只要满足某些条件。网络重新配置将转换为选择要在资源故障发生后选择要修改的边缘的问题。基于有限时间收敛控制屏障功能的控制器将每个机器人驱动到空间位置,该空间位置启用了修改图的通信链接。我们通过将框架部署在估计一组四键位置的差异驱动机器人的团队中来验证我们的框架的有效性。

We propose a framework for resilience in a networked heterogeneous multi-robot team subject to resource failures. Each robot in the team is equipped with resources that it shares with its neighbors. Additionally, each robot in the team executes a task, whose performance depends on the resources to which it has access. When a resource on a particular robot becomes unavailable (\eg a camera ceases to function), the team optimally reconfigures its communication network so that the robots affected by the failure can continue their tasks. We focus on a monitoring task, where robots individually estimate the state of an exogenous process. We encode the end-to-end effect of a robot's resource loss on the monitoring performance of the team by defining a new stronger notion of observability -- \textit{one-hop observability}. By abstracting the impact that {low-level} individual resources have on the task performance through the notion of one-hop observability, our framework leads to the principled reconfiguration of information flow in the team to effectively replace the lost resource on one robot with information from another, as long as certain conditions are met. Network reconfiguration is converted to the problem of selecting edges to be modified in the system's communication graph after a resource failure has occurred. A controller based on finite-time convergence control barrier functions drives each robot to a spatial location that enables the communication links of the modified graph. We validate the effectiveness of our framework by deploying it on a team of differential-drive robots estimating the position of a group of quadrotors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源