论文标题
通过旋转MGF分子的旋转封锁魔术潜力的纠缠
Entanglement via rotational blockade of MgF molecules in a magic potential
论文作者
论文摘要
硅质极性分子是量子计算的最有希望的平台之一,由于其丰富的内部状态和较大的电偶极矩。在这里,我们提出了通过强的电偶极 - 偶极相互作用的相邻极性分子的纠缠旋转状态。预计在光学镊子阵列中的MGF分子将在两个纠缠状态之间分裂1.27 kHz。可以在旋转状态具有相同陷阱频率的分子的魔法潜力中实现纠缠状态的分辨率。可以通过调整分子量化轴与捕获光的线性极化,所谓的魔法角度之间的角度来形成魔术电位。我们在合理的实验条件下计算MGF分子的魔法角度,并获得两个相关状态的陷阱频率可以在Hz的几个10s中匹配。建立分子之间的纠缠,我们的结果为使用双极极性分子迈出了量子计算的第一步。
Diatomic polar molecules are one of the most promising platforms of quantum computing due to their rich internal states and large electric dipole moments. Here, we propose entangling rotational states of adjacent polar molecules via a strong electric dipole-dipole interaction. The splitting of 1.27 kHz between two entangled states is predicted for MgF molecules in an optical tweezer array. The resolution of the entangled states can be achieved in a magic potential for the molecules where the rotational states have the same trap frequencies. The magic potential can be formed by tuning the angle between the molecules' quantization axis and the linear polarization of trapping light, so-called magic angle. We calculate the magic angle for MgF molecules in a reasonable experimental condition and obtain that the trap frequencies of the two involved states can be matched within a few 10s of Hz. Establishing entanglement between molecules, our results provide a first step towards quantum computing using diatomic polar molecules.