论文标题

随机矩阵的特征多项式

The characteristic polynomial of a random matrix

论文作者

Eberhard, Sean

论文摘要

通过$ \ {\ pm1 \} $独立于绘制条目(或在$ \ Mathbf {z} $中)形成$ n \ times n $矩阵(或另一个固定的非平地有限支持的分布),让$ ϕ $为特征polynomial。有条件地在扩展的Riemann假设上,具有高概率$ ϕ $是不可约的,而$ \ mathrm {gal}(ϕ)\ geq a_n $。

Form an $n \times n$ matrix by drawing entries independently from $\{\pm1\}$ (or another fixed nontrivial finitely supported distribution in $\mathbf{Z}$) and let $ϕ$ be the characteristic polynomial. Conditionally on the extended Riemann hypothesis, with high probability $ϕ$ is irreducible and $\mathrm{Gal}(ϕ) \geq A_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源