论文标题

知识翻译:扩展技术报告

Knowledge Translation: Extended Technical Report

论文作者

Bashardoost, Bahar Ghadiri, Miller, Renée J., Lyons, Kelly, Nargesian, Fatemeh

论文摘要

我们介绍了Kensho,该工具用于在两个知识库(KB)之间生成映射规则。为了创建映射规则,Kensho从一组对应关系开始,并通过自动从KBS的结构和约束中自动识别出其他语义信息。我们的方法分为两个阶段。在第一阶段,捕获了每个KB资源之间的语义关联。在第二阶段中,映射规则是通过以尊重每个KB元素之间发现的语义关联的方式来解释对应关系来生成的。 Kensho的映射规则是使用SPARQL查询表示的,可直接用于将知识从源到目标交换。 Kensho能够使用一组启发式方法自动对生成的映射规则进行排名。我们提出了对Kensho的实验评估,并使用50多个合成和现实世界的环境评估了我们的映射生成和排名策略,以展示一些知识翻译的一些最重要的应用。此外,我们使用三个现有的基准来展示Kensho处理不同映射方案的能力。

We introduce Kensho, a tool for generating mapping rules between two Knowledge Bases (KBs). To create the mapping rules, Kensho starts with a set of correspondences and enriches them with additional semantic information automatically identified from the structure and constraints of the KBs. Our approach works in two phases. In the first phase, semantic associations between resources of each KB are captured. In the second phase, mapping rules are generated by interpreting the correspondences in a way that respects the discovered semantic associations among elements of each KB. Kensho's mapping rules are expressed using SPARQL queries and can be used directly to exchange knowledge from source to target. Kensho is able to automatically rank the generated mapping rules using a set of heuristics. We present an experimental evaluation of Kensho and assess our mapping generation and ranking strategies using more than 50 synthesized and real world settings, chosen to showcase some of the most important applications of knowledge translation. In addition, we use three existing benchmarks to demonstrate Kensho's ability to deal with different mapping scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源