论文标题
广告中的散装田地$ {} _ 3 $
Dressing bulk fields in AdS${}_3$
论文作者
论文摘要
我们研究了一组CFT操作员,适用于在CFT中有保守的Spin- $ N $的情况下,在CFT的存在下,在CFT的存在下,CFT中的dimension $δ$的ADS $ {} $ {} $ {} _ 3 $ IN AD $ {} _ 3 $中的CFT $ ϕ $。必须总结一塔涂抹的非主要标量$ \ partial _ {+}^{m} j^{(m)} $,其中$ j^{(m)} $是带有twist $Δ$和spin $ m $构建的$ {\ cal o} $和电流的初级$queΔ$和spin $ m $。这些操作员的系数可以通过要求散装相关器明确定义来固定:使用简单的ANSATZ,此要求使我们能够直接从CFT计算散装相关器。它们是由运动不变的特定多项式构建的,直到可以自由进行现场重新定义。要订购$ 1/n $,此过程通过径向广义的威尔逊线捕获了散装标量场的敷料。
We study a set of CFT operators suitable for reconstructing a charged bulk scalar field $ϕ$ in AdS${}_3$ (dual to an operator ${\cal O}$ of dimension $Δ$ in the CFT) in the presence of a conserved spin-$n$ current in the CFT. One has to sum a tower of smeared non-primary scalars $\partial_{+}^{m} J^{(m)}$, where $J^{(m)}$ are primaries with twist $Δ$ and spin $m$ built from ${\cal O}$ and the current. The coefficients of these operators can be fixed by demanding that bulk correlators are well-defined: with a simple ansatz this requirement allows us to calculate bulk correlators directly from the CFT. They are built from specific polynomials of the kinematic invariants up to a freedom to make field redefinitions. To order $1/N$ this procedure captures the dressing of the bulk scalar field by a radial generalized Wilson line.