论文标题

用于临床搜索建议的混合协作过滤模型

Hybrid Collaborative Filtering Models for Clinical Search Recommendation

论文作者

Ren, Zhiyun, Peng, Bo, Schleyer, Titus K., Ning, Xia

论文摘要

随着电子健康记录的增加和广泛使用,临床医生在需要在诊所中大量患者健康记录中有效地检索重要信息时通常会在时间压力下。尽管搜索功能可以是通过患者记录浏览的有用替代方法,但对于临床医生来说,反复搜索相似患者的相同或相似信息很麻烦。在这种情况下,迫切需要建立有效的推荐系统,该系统可以为临床医生生成准确的搜索术语建议。在此手稿中,我们使用患者的遇到和搜索术语信息开发了一种混合协作过滤模型,以推荐下一个搜索词供临床医生在诊所快速检索重要信息。对于每个患者,该模型将建议用他/她最近的ICD代码具有很高的共发生频率,或者与该患者的最新搜索词高度相关。我们已经进行了全面的实验来评估所提出的模型,实验结果表明,我们的模型可以胜过所有最新的基线方法,用于在不同数据集中提出顶级搜索术语建议。

With increasing and extensive use of electronic health records, clinicians are often under time pressure when they need to retrieve important information efficiently among large amounts of patients' health records in clinics. While a search function can be a useful alternative to browsing through a patient's record, it is cumbersome for clinicians to search repeatedly for the same or similar information on similar patients. Under such circumstances, there is a critical need to build effective recommender systems that can generate accurate search term recommendations for clinicians. In this manuscript, we developed a hybrid collaborative filtering model using patients' encounter and search term information to recommend the next search terms for clinicians to retrieve important information fast in clinics. For each patient, the model will recommend terms that either have high co-occurrence frequencies with his/her most recent ICD codes or are highly relevant to the most recent search terms on this patient. We have conducted comprehensive experiments to evaluate the proposed model, and the experimental results demonstrate that our model can outperform all the state-of-the-art baseline methods for top-N search term recommendation on different datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源