论文标题

未来智能跨媒体检索的深度学习技术

Deep Learning Techniques for Future Intelligent Cross-Media Retrieval

论文作者

Rehman, Sadaqat ur, Waqas, Muhammad, Tu, Shanshan, Koubaa, Anis, Rehman, Obaid ur, Ahmad, Jawad, Hanif, Muhammad, Han, Zhu

论文摘要

随着技术的进步和广播的扩展,Cross-Media的检索引起了很多关注。它在大数据应用程序中起着重要作用,并在于搜索和从不同类型的媒体中找到数据。在本文中,我们根据多模式深度学习方法在解决跨媒体检索方面所面临的挑战提供了一种新颖的分类法,即:表示,对准和翻译。这些挑战是根据基于深度学习(DL)的方法评估的,这些方法分为四个主要组:1)无监督方法,2)监督方法,3)基于成对的方法和4)基于等级的方法。然后,我们提出了一些用于检索的著名跨媒体数据集,考虑到这些数据集在基于深度学习的跨媒体检索方法中的重要性。此外,我们还对最新问题及其相应的解决方案进行了广泛的评论,以鼓励跨媒体检索深度学习。这项工作的基本目标是利用深层神经网络(DNN)来弥合“媒体差距”,并为研究人员和开发人员提供更好地了解潜在问题以及深度学习的潜在解决方案,这有助于跨跨媒体的检索。据我们所知,这是第一次解决深度学习方法下跨媒体检索的综合调查。

With the advancement in technology and the expansion of broadcasting, cross-media retrieval has gained much attention. It plays a significant role in big data applications and consists in searching and finding data from different types of media. In this paper, we provide a novel taxonomy according to the challenges faced by multi-modal deep learning approaches in solving cross-media retrieval, namely: representation, alignment, and translation. These challenges are evaluated on deep learning (DL) based methods, which are categorized into four main groups: 1) unsupervised methods, 2) supervised methods, 3) pairwise based methods, and 4) rank based methods. Then, we present some well-known cross-media datasets used for retrieval, considering the importance of these datasets in the context in of deep learning based cross-media retrieval approaches. Moreover, we also present an extensive review of the state-of-the-art problems and its corresponding solutions for encouraging deep learning in cross-media retrieval. The fundamental objective of this work is to exploit Deep Neural Networks (DNNs) for bridging the "media gap", and provide researchers and developers with a better understanding of the underlying problems and the potential solutions of deep learning assisted cross-media retrieval. To the best of our knowledge, this is the first comprehensive survey to address cross-media retrieval under deep learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源