论文标题

使用扩展器图测试样品是否为I.I.D

Using Expander Graphs to test whether samples are i.i.d

论文作者

Steinerberger, Stefan

论文摘要

本说明的目的是指出,扩展器图理论会导致一个有趣的测试。对于任何独特的实数$ x_1,\ dots,x_n $,我们将4个常规图$ g $关联,如下所示:使用$π$表示订购元素的订单,$ x_ {π(1)} <x__ {π(π(2)} <x} <x____________________________________ { N \ right \} $通过连接$ i $和$ i+1 $(周期性)和$π(i)$和$π(i+1)$(周期性)。如果数字是I.I.D.然后,弗里德曼(Friedman)的结果意味着$ g $接近拉玛努扬(Ramanujan)。这表明了这些数字是否为I.I.D:计算邻接矩阵的第二大特征值(以绝对值)特征值进行测试。较大的$λ-2 \ sqrt {3} $,数字为i.i.d.我们解释了为什么这是一个合理的测试,并给出了许多例子。

The purpose of this note is to point out that the theory of expander graphs leads to an interesting test whether $n$ real numbers $x_1, \dots, x_n$ could be $n$ independent samples of a random variable. To any distinct, real numbers $x_1, \dots, x_n$, we associate a 4-regular graph $G$ as follows: using $π$ to denote the permutation ordering the elements, $x_{π(1)} < x_{π(2)} < \dots < x_{π(n)}$, we build a graph on $\left\{1, \dots, n\right\}$ by connecting $i$ and $i+1$ (cyclically) and $π(i)$ and $π(i+1)$ (cyclically). If the numbers are i.i.d. samples, then a result of Friedman implies that $G$ is close to Ramanujan. This suggests a test for whether these numbers are i.i.d: compute the second largest (in absolute value) eigenvalue of the adjacency matrix. The larger $λ- 2\sqrt{3}$, the less likely it is for the numbers to be i.i.d. We explain why this is a reasonable test and give many examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源