论文标题
painlevéii $τ$函数的弗雷霍尔姆决定因素代表
Fredholm determinant representation of the Painlevé II $τ$-function
论文作者
论文摘要
我们将PainlevéII方程的通用$τ$ - 功能作为弗雷姆姆(Fredholm)的决定因素(it-izergin-korepin-slavnov)。 $τ$函数取决于等粒粒子时间$ t $和两个stokes的参数,而$τ$ function的消失基因座,称为Malgrange Divisor,由弗雷德霍尔姆(Fredholm)的零零确定。
We formulate the generic $τ$-function of the Painlevé II equation as a Fredholm determinant of an integrable (Its-Izergin-Korepin-Slavnov) operator. The $τ$-function depends on the isomonodromic time $t$ and two Stokes' parameters, and the vanishing locus of the $τ$-function, called the Malgrange divisor is determined by the zeros of the Fredholm determinant.