论文标题

painlevéii $τ$函数的弗雷霍尔姆决定因素代表

Fredholm determinant representation of the Painlevé II $τ$-function

论文作者

Desiraju, Harini

论文摘要

我们将PainlevéII方程的通用$τ$ - 功能作为弗雷姆姆(Fredholm)的决定因素(it-izergin-korepin-slavnov)。 $τ$函数取决于等粒粒子时间$ t $和两个stokes的参数,而$τ$ function的消失基因座,称为Malgrange Divisor,由弗雷德霍尔姆(Fredholm)的零零确定。

We formulate the generic $τ$-function of the Painlevé II equation as a Fredholm determinant of an integrable (Its-Izergin-Korepin-Slavnov) operator. The $τ$-function depends on the isomonodromic time $t$ and two Stokes' parameters, and the vanishing locus of the $τ$-function, called the Malgrange divisor is determined by the zeros of the Fredholm determinant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源