论文标题
原始半径差距以及潜在的超级岩石和亚北极的核心质量分布
Primordial Radius Gap and Potentially Broad Core Mass Distributions of Super-Earths and Sub-Neptunes
论文作者
论文摘要
观察到的{\ it Kepler}系外行星的半径分布揭示了两个不同的种群:更可能是陆生的人群($ \ lysSim1.7r_ \ oplus $),而那些更可能是煤气的人($ \ gtrsim2r_ \ oplus $)。在半径的分布中存在明显的差距,将这两种行星分开。已经提出,诸如宿主恒星的高能光子光蒸发之类的质量损失过程已被提议作为自然机制来雕刻这一半径谷。这些模型有利于子纳普的基本核心质量函数,这些核心质量功能在$ \ sim $ \ sim $ 4--8 $ m_ \ oplus $中,但这些小行星的径向速度随访暗示着一个更底部的质量功能。通过考虑到气体贫困(但不是气体空心)星云的初始气体积聚,我们证明了1)观察到的半径谷是一个可靠的特征,在延迟时间积聚期间最初在形成时刻有良好的特征; 2)它可以与核心质量函数进行调和,这些核心质量函数范围广泛地扩展到亚洲统治制度。最大冷却的等温限制禁止将核心比$ \ sim $ 1--2 $ m_ \ oplus $轻,从而吸收足够的质量以表现出煤气。在地层上建立的岩石到发达的过渡会产生半径分布的差距,该间隙与恒星更远地转移到较小的半径,类似于观察到的恒星。为了与数据达成最佳一致性,我们的延迟气体积聚模型有利于在热盘中无尘的积聚,其核心的密度略低于地球($ \ sim $ 0.8 $ρ_\ oplus $),从质量函数中得出的质量与$ $ dn/dm _ {\ rm core} \ propto propto propto propto propto propto propto propto propto prop to
The observed radii distribution of {\it Kepler} exoplanets reveals two distinct populations: those that are more likely to be terrestrials ($\lesssim1.7R_\oplus$) and those that are more likely to be gas-enveloped ($\gtrsim2R_\oplus$). There exists a clear gap in the distribution of radii that separates these two kinds of planets. Mass loss processes like photoevaporation by high energy photons from the host star have been proposed as natural mechanisms to carve out this radius valley. These models favor underlying core mass function of sub-Neptunes that is sharply peaked at $\sim$4--8$M_\oplus$ but the radial-velocity follow-up of these small planets hint at a more bottom-heavy mass function. By taking into account the initial gas accretion in gas-poor (but not gas-empty) nebula, we demonstrate that 1) the observed radius valley is a robust feature that is initially carved out at formation during late-time gas accretion; and 2) that it can be reconciled with core mass functions that are broad extending well into sub-Earth regime. The maximally cooled isothermal limit prohibits cores lighter than $\sim$1--2$M_\oplus$ from accreting enough mass to appear gas-enveloped. The rocky-to-enveloped transition established at formation produces a gap in the radius distribution that shifts to smaller radii farther from the star, similar to that observed. For the best agreement with the data, our late-time gas accretion model favors dust-free accretion in hotter disks with cores slightly less dense than the Earth ($\sim$0.8$ρ_\oplus$) drawn from a mass function that is as broad as $dN/dM_{\rm core} \propto M_{\rm core}^{-0.7}$.