论文标题

适当的Orbifold共同体

Proper Orbifold Cohomology

论文作者

Sati, Hisham, Schreiber, Urs

论文摘要

Orbifolds的概念应用均等同义理论统一差异几何形状,以便Orbifold的同种学应通过适当的Equivariant共同体学理论统一差异共同体。尽管Orbifolds在数学和数学物理学中发挥了重要作用,尤其是在弦理论中,但反映这种统一的Orbifolds的一般理论的表述仍然是一个开放的问题。在这里,我们提出了一种自然理论,主张实现这一目标。我们既给出了较高的Topos理论中的一般摘要公理化,也提供了用于超级几何和高几何轨道的混凝土模型。我们的第一个主要结果是将2类Orbifolds完全忠实地嵌入到一个奇异的无限性中,其内在的共同体学理论是适当的全球性差异化概括性共同体,并累积了传统的Orbifold共同体学,Chen-Ruan Coohomology和Orbifold Kthore。我们的第二个主要结果是Orbifold etale的共同体的一般结构,我们表明,它自然地统一了(i)平滑但弯曲空间的切向扭曲的共同体,具有(ii)RO级的适当的纯平的同类式共同体。作为一个基本示例,我们提出了J-Twist的Orbifold共同体理论,具有广义泰特球体形状的系数。根据“假设H”,这包括控制非扰动弦理论的适当的Orbifold共同体学理论。

The concept of orbifolds should unify differential geometry with equivariant homotopy theory, so that orbifold cohomology should unify differential cohomology with proper equivariant cohomology theory. Despite the prominent role that orbifolds have come to play in mathematics and mathematical physics, especially in string theory, the formulation of a general theory of orbifolds reflecting this unification has remained an open problem. Here we present a natural theory argued to achieve this. We give both a general abstract axiomatization in higher topos theory, as well as concrete models for ordinary as well as for super-geometric and for higher-geometric orbifolds. Our first main result is a fully faithful embedding of the 2-category of orbifolds into a singular-cohesive infinity-topos whose intrinsic cohomology theory is proper globally equivariant differential generalized cohomology, subsuming traditional orbifold cohomology, Chen-Ruan cohomology, and orbifold K-theory. Our second main result is a general construction of orbifold etale cohomology which we show to naturally unify (i) tangentially twisted cohomology of smooth but curved spaces with (ii) RO-graded proper equivariant cohomology of flat but singular spaces. As a fundamental example we present J-twisted orbifold Cohomotopy theories with coefficients in shapes of generalized Tate spheres. According to "Hypothesis H" this includes the proper orbifold cohomology theory that controls non-perturbative string theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源