论文标题

随机扰动超图中的因素

Factors in randomly perturbed hypergraphs

论文作者

Chang, Yulin, Han, Jie, Kohayakawa, Yoshiharu, Morris, Patrick, Mota, Guilherme Oliveira

论文摘要

我们确定需要添加到$ k $ -graph $ h $中的最佳随机边数,并具有最低顶点$ω(n^{k-1})$,以确保具有较高概率的$ f $ f $ f $,对于任何属于某个类别$ \ nthercal的$ f $的$ f $ $ k $ -partite $ k $ -graphs,$ k_4^{(3) - } $和fano plane。特别是,将$ f $作为单一优势,这解决了Krivelevich,Kwan和Sudakov [Combin。概率。计算。 25(2016),909--927]。我们还解决了主机图$ h $并不致密的情况,这表明从某些$ h $开始与从空图开始(即纯粹随机模型)基本相同。

We determine, up to a multiplicative constant, the optimal number of random edges that need to be added to a $k$-graph $H$ with minimum vertex degree $Ω(n^{k-1})$ to ensure an $F$-factor with high probability, for any $F$ that belongs to a certain class $\mathcal{F}$ of $k$-graphs, which includes, e.g., all $k$-partite $k$-graphs, $K_4^{(3)-}$ and the Fano plane. In particular, taking $F$ to be a single edge, this settles a problem of Krivelevich, Kwan and Sudakov [Combin. Probab. Comput. 25 (2016), 909--927]. We also address the case in which the host graph $H$ is not dense, indicating that starting from certain such $H$ is essentially the same as starting from an empty graph (namely, the purely random model).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源