论文标题

结合乳腺癌风险预测模型

Combining Breast Cancer Risk Prediction Models

论文作者

Guan, Zoe, Huang, Theodore, McCarthy, Anne Marie, Hughes, Kevin S., Semine, Alan, Uno, Hajime, Trippa, Lorenzo, Parmigiani, Giovanni, Braun, Danielle

论文摘要

准确的风险分层是通过靶向筛查和预防干预措施降低癌症发病率的关键。已经开发了许多乳腺癌风险预测模型,但是它们通常会给临床含义矛盾的预测。来自不同模型的信息可以提高风险预测的准确性,这对临床医生和患者都很有价值。 BRCAPRO和BCRAT是两个广泛使用的模型,基于互补的风险因素集。 BRCAPRO是一种贝叶斯模型,它使用详细的家族史信息来估计携带BRCA1/2突变的可能性,以及基于突变的患病率和渗透率(鉴于基因型的癌症的年龄特异性概率),以及乳腺癌和卵巢癌的未来风险。 Bcrat使用基于一级家族史和非遗传风险因素的相对危险模型。我们考虑了将BRCAPRO和BCRAT结合的两种方法:1)使用BCRAT的相对危害估计值修改BRCAPRO中的渗透函数,以及2)训练一个集合模型,该模型以输入BRCAPRO和BCRAT预测为输入。我们表明,组合模型在癌症遗传网络中的模拟和数据中实现了BRCAPRO和BCRAT的性能。

Accurate risk stratification is key to reducing cancer morbidity through targeted screening and preventative interventions. Numerous breast cancer risk prediction models have been developed, but they often give predictions with conflicting clinical implications. Integrating information from different models may improve the accuracy of risk predictions, which would be valuable for both clinicians and patients. BRCAPRO and BCRAT are two widely used models based on largely complementary sets of risk factors. BRCAPRO is a Bayesian model that uses detailed family history information to estimate the probability of carrying a BRCA1/2 mutation, as well as future risk of breast and ovarian cancer, based on mutation prevalence and penetrance (age-specific probability of developing cancer given genotype). BCRAT uses a relative hazard model based on first-degree family history and non-genetic risk factors. We consider two approaches for combining BRCAPRO and BCRAT: 1) modifying the penetrance functions in BRCAPRO using relative hazard estimates from BCRAT, and 2) training an ensemble model that takes as input BRCAPRO and BCRAT predictions. We show that the combination models achieve performance gains over BRCAPRO and BCRAT in simulations and data from the Cancer Genetics Network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源