论文标题

用于分析多维神经元和行为关系的参数copula-GP模型

Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships

论文作者

Kudryashova, Nina, Amvrosiadis, Theoklitos, Dupuy, Nathalie, Rochefort, Nathalie, Onken, Arno

论文摘要

当前系统神经科学中的主要挑战之一是分析高维神经元和行为数据的分析,这些数据的特征是记录变量的不同统计和时间表。我们提出了一个参数模型,该模型将各个变量的统计数据与其依赖性结构分开,并通过使用藤蔓copula构造来避免维数的诅咒。我们在Copula参数上使用带有高斯进程(GP)先验的贝叶斯框架,以连续的与任务相关的变量为条件。我们验证了合成数据的模型,并比较了其在估计共同信息与常用非参数算法的性能中的性能。 当数据中的依赖项与我们框架中使用的参数copulas匹配时,我们的模型提供了准确的信息估计。当无法使用参数模型的确切密度估计值时,我们的Copula-GP模型仍然能够提供合理的信息估计值,接近地面真相,并且与使用神经网络估计器获得的信息估计。最后,我们将框架应用于在清醒小鼠中获得的真实神经元和行为记录。我们证明了我们的框架的能力 1)产生准确且可解释的双变量模型,以分析神经元间噪声相关性或行为调制; 2)扩展到100多个维度,并在整个人口统计中测量信息内容。这些结果表明,Copula-GP框架对于分析神经元,感觉和行为数据之间的复杂多维关系特别有用。

One of the main challenges in current systems neuroscience is the analysis of high-dimensional neuronal and behavioral data that are characterized by different statistics and timescales of the recorded variables. We propose a parametric copula model which separates the statistics of the individual variables from their dependence structure, and escapes the curse of dimensionality by using vine copula constructions. We use a Bayesian framework with Gaussian Process (GP) priors over copula parameters, conditioned on a continuous task-related variable. We validate the model on synthetic data and compare its performance in estimating mutual information against the commonly used non-parametric algorithms. Our model provides accurate information estimates when the dependencies in the data match the parametric copulas used in our framework. When the exact density estimation with a parametric model is not possible, our Copula-GP model is still able to provide reasonable information estimates, close to the ground truth and comparable to those obtained with a neural network estimator. Finally, we apply our framework to real neuronal and behavioral recordings obtained in awake mice. We demonstrate the ability of our framework to 1) produce accurate and interpretable bivariate models for the analysis of inter-neuronal noise correlations or behavioral modulations; 2) expand to more than 100 dimensions and measure information content in the whole-population statistics. These results demonstrate that the Copula-GP framework is particularly useful for the analysis of complex multidimensional relationships between neuronal, sensory and behavioral data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源