论文标题

将凹点检测提高到图像中更好的段重叠对象

Improving concave point detection to better segment overlapped objects in images

论文作者

Miró-Nicolau, Miquel, Moyà-Alcover, Biel, Gonzàlez-Hidalgo, Manuel, Jaume-i-Capó, Antoni

论文摘要

本文提出了一种改善凹点检测方法的最新方法,作为将对象分割在图像上的第一步。它基于对物体轮廓曲率的分析。该方法具有三个主要步骤。首先,我们预处理原始图像以在每个轮廓点上获得曲率的值。其次,我们选择具有较高曲率的区域,并应用递归算法来完善先前的选定区域。最后,我们根据对邻居的相对位置的分析从每个区域获得一个凹点,我们实验表明,更好的凹点检测意味着更好的群集分裂。为了评估凹点检测算法的质量,我们构建了一个合成数据集来模拟重叠对象,从而将凹点的位置作为基础真理。作为一个案例研究,评估了众所周知的应用的性能,例如,在镰状细胞贫血患者的外周血涂片样本中将重叠的细胞分裂。我们使用了所提出的方法来检测细胞簇中的凹点,然后通过椭圆拟合分离该簇。

This paper presents a method that improve state-of-the-art of the concave point detection methods as a first step to segment overlapping objects on images. It is based on the analysis of the curvature of the objects contour. The method has three main steps. First, we pre-process the original image to obtain the value of the curvature on each contour point. Second, we select regions with higher curvature and we apply a recursive algorithm to refine the previous selected regions. Finally, we obtain a concave point from each region based on the analysis of the relative position of their neighbourhood We experimentally demonstrated that a better concave points detection implies a better cluster division. In order to evaluate the quality of the concave point detection algorithm, we constructed a synthetic dataset to simulate overlapping objects, providing the position of the concave points as a ground truth. As a case study, the performance of a well-known application is evaluated, such as the splitting of overlapped cells in images of peripheral blood smears samples of patients with sickle cell anaemia. We used the proposed method to detect the concave points in clusters of cells and then we separate this clusters by ellipse fitting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源