论文标题

有条件的潜在区块模型:一种自动驾驶验证的多元时间序列聚类方法

Conditional Latent Block Model: a Multivariate Time Series Clustering Approach for Autonomous Driving Validation

论文作者

Goffinet, Etienne, Coutant, Anthony, Lebbah, Mustapha, Azzag, Hanane, Giraldi, Loïc

论文摘要

自动驾驶系统验证仍然是汽车制造商必须解决的最大挑战之一,以提供安全的无人驾驶汽车。高复杂性源于几个因素:车辆,嵌入式系统,用例以及对于驾驶系统至少与人类驾驶员一样安全的可靠性水平。为了避免这些问题,大规模的模拟重现了这种各种物理状况的大量用于测试无人驾驶汽车。因此,验证步骤会产生大量数据,包括许多时间指数的数据。在这种情况下,必须在特征空间中构建结构来解释各种情况。在这项工作中,我们提出了一种适合高维时间序列分析的新的共聚类方法,该方法扩展了基于标准模型的共聚类。 FUNCLBM模型扩展了最近提出的功能潜在块模型,并允许在行和列簇之间创建依赖关系结构。该结构化分区充当特征选择方法,可提供数据集的几个聚类视图,同时区分不相关的功能。在此工作流程中,Times系列被投影到一个常见的插值低维频率空间上,从而可以优化投影基础。此外,FUNCLBM通过执行较小的尺寸减小和特征选择来完善每个潜在块的定义。我们建议使用SEM-GIBBS算法来推断此模型,以及选择最佳嵌套分区的专用标准。对模拟和实际案例雷诺数据集进行的实验显示了所提出的工具的有效性以及对我们用例的适当性。

Autonomous driving systems validation remains one of the biggest challenges car manufacturers must tackle in order to provide safe driverless cars. The high complexity stems from several factors: the multiplicity of vehicles, embedded systems, use cases, and the very high required level of reliability for the driving system to be at least as safe as a human driver. In order to circumvent these issues, large scale simulations reproducing this huge variety of physical conditions are intensively used to test driverless cars. Therefore, the validation step produces a massive amount of data, including many time-indexed ones, to be processed. In this context, building a structure in the feature space is mandatory to interpret the various scenarios. In this work, we propose a new co-clustering approach adapted to high-dimensional time series analysis, that extends the standard model-based co-clustering. The FunCLBM model extends the recently proposed Functional Latent Block Model and allows to create a dependency structure between row and column clusters. This structured partition acts as a feature selection method, that provides several clustering views of a dataset, while discriminating irrelevant features. In this workflow, times series are projected onto a common interpolated low-dimensional frequency space, which allows to optimize the projection basis. In addition, FunCLBM refines the definition of each latent block by performing block-wise dimension reduction and feature selection. We propose a SEM-Gibbs algorithm to infer this model, as well as a dedicated criterion to select the optimal nested partition. Experiments on both simulated and real-case Renault datasets shows the effectiveness of the proposed tools and the adequacy to our use case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源