论文标题

纯$ \ mathbb {z} _3 $ gauge理论(2+1)d的变异蒙特卡洛仿真

Variational Monte Carlo simulation with tensor networks of a pure $\mathbb{Z}_3$ gauge theory in (2+1)d

论文作者

Emonts, Patrick, Bañuls, Mari Carmen, Cirac, J. Ignacio, Zohar, Erez

论文摘要

张量网络状态的变分最小化可以探索晶格规定的低能状态。但是,一般而言,高维张量网络状态的确切数值评估仍然具有挑战性。在[E. Zohar,J。I。Cirac,物理学。 Rev. D 97,034510(2018)]显示,通过将测量高斯投影的纠缠状状态与各种蒙特卡洛程序相结合,可以有效地计算物理可观察结果。在本文中,我们演示了如何使用这种方法来数字研究晶格仪理论的基态。更具体地说,我们基于此类收缩方法明确地执行了各种蒙特卡洛手术,用于在两个空间维度中使用$ \ mathbb {z} _3 $量表字段的纯尺度kogut-susskind hamiltonian进行。这是该方法的原理的第一个证明,它提供了增加变异参数数量的固有方法,并且可以很容易地扩展到具有物理费米子的系统。

Variational minimization of tensor network states enables the exploration of low energy states of lattice gauge theories. However, the exact numerical evaluation of high-dimensional tensor network states remains challenging in general. In [E. Zohar, J. I. Cirac, Phys. Rev. D 97, 034510 (2018)] it was shown how, by combining gauged Gaussian projected entangled pair states with a variational Monte Carlo procedure, it is possible to efficiently compute physical observables. In this paper we demonstrate how this approach can be used to investigate numerically the ground state of a lattice gauge theory. More concretely, we explicitly carry out the variational Monte Carlo procedure based on such contraction methods for a pure gauge Kogut-Susskind Hamiltonian with a $\mathbb{Z}_3$ gauge field in two spatial dimensions. This is a first proof of principle to the method, which provides an inherent way to increase the number of variational parameters and can be readily extended to systems with physical fermions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源