论文标题
明确的结果是等于理性二次形式的等效性
Explicit Result on Equivalence of Rational Quadratic Forms Avoiding Primes
论文作者
论文摘要
鉴于在$ \ mathbb {q} $上的一对常规二次形式,它们在同一属和一组有限的素数$ p $中,我们表明,有一种有效的方法可以确定这两种二次形式之间的合理等价,这些形式在$ p $中不可或缺。这回答了Conway和Sloane在他们的书中提出的主要问题之一{\ em Sphere包装,格子和群体},Grundlehren der Mathematischen Wissenschaften [数学科学的基本原理],第290卷,Springer-Verlag,纽约,纽约,1999年;第402页。
Given a pair of regular quadratic forms over $\mathbb{Q}$ which are in the same genus and a finite set of primes $P$, we show that there is an effective way to determine a rational equivalence between these two quadratic forms which are integral over every prime in $P$. This answers one of the principal questions posed by Conway and Sloane in their book {\em Sphere packings, lattices and groups}, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol 290, Springer-Verlag, New York, 1999; page 402.