论文标题

通过雨条和蒸气重新思考图像

Rethinking Image Deraining via Rain Streaks and Vapors

论文作者

Wang, Yinglong, Song, Yibing, Ma, Chao, Zeng, Bing

论文摘要

单图像将输入图像视为背景图像的融合,传输图,雨条和大气光。虽然提出了用于图像恢复的高级模型(即背景图像产生),但它们介绍具有与背景而非传输介质相同特性的雨条。随着蒸气(即雨条的积累或类似雾状的雨水)在传输图中传达以建模叶子效应,因此雨条和蒸气的融合并不能自然反映雨图像形成。在这项工作中,我们将雨条与变速箱介质以及蒸气一起重新制定,以建模雨成像。我们提出了一个被称为SNET的编码器Decoder CNN,以学习雨条的传输图。随着雨条带有各种形状和方向,我们使用SNET中的Shufflenet单元来捕获其各向异性表示。由于蒸气是由雨条带来的,因此我们提出了一个含有空间金字塔池(SSP)的VNET,以根据雨条的条纹预测多尺度中蒸气的传输图。同时,我们使用一个名为ANET的编码器CNN来估计大气光。 SNET,VNET和ANET经过共同训练,以预测用于降雨图像恢复的传输图和大气光。基准数据集上的广泛实验证明了所提出的视觉模型预测雨条和蒸气的有效性。所提出的DERANE方法对最新方法的方法表现出色。

Single image deraining regards an input image as a fusion of a background image, a transmission map, rain streaks, and atmosphere light. While advanced models are proposed for image restoration (i.e., background image generation), they regard rain streaks with the same properties as background rather than transmission medium. As vapors (i.e., rain streaks accumulation or fog-like rain) are conveyed in the transmission map to model the veiling effect, the fusion of rain streaks and vapors do not naturally reflect the rain image formation. In this work, we reformulate rain streaks as transmission medium together with vapors to model rain imaging. We propose an encoder-decoder CNN named as SNet to learn the transmission map of rain streaks. As rain streaks appear with various shapes and directions, we use ShuffleNet units within SNet to capture their anisotropic representations. As vapors are brought by rain streaks, we propose a VNet containing spatial pyramid pooling (SSP) to predict the transmission map of vapors in multi-scales based on that of rain streaks. Meanwhile, we use an encoder CNN named ANet to estimate atmosphere light. The SNet, VNet, and ANet are jointly trained to predict transmission maps and atmosphere light for rain image restoration. Extensive experiments on the benchmark datasets demonstrate the effectiveness of the proposed visual model to predict rain streaks and vapors. The proposed deraining method performs favorably against state-of-the-art deraining approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源