论文标题
丛林中的协作学习(分散,拜占庭,异质,异步和非convex学习)
Collaborative Learning in the Jungle (Decentralized, Byzantine, Heterogeneous, Asynchronous and Nonconvex Learning)
论文作者
论文摘要
我们研究拜占庭协作学习,其中$ n $节点试图从彼此的本地数据中共同学习。数据分布可能从一个节点到另一个节点有所不同。没有信任节点,$ f <n $节点可以任意行为。我们证明协作学习等同于一种新的协议形式,我们称之为平均协议。在此问题中,节点是从初始向量开始的,并试图大致同意共同向量,该向量接近诚实节点初始向量的平均值。我们为平均协议提供了两个异步解决方案,每个方案都根据某个维度而证明是最佳的。第一个基于最小直径平均,需要$ n \ geq 6f+1 $,但渐近地实现了最有可能的平均常数,最多可达到乘数常数。第二个基于可靠的广播和坐标的均值平均值,实现了最佳的拜占庭弹性,即$ n \ geq 3f+1 $。这些算法中的每一个都诱导了最佳的拜占庭协作学习协议。特别是,我们的等价性产生了关于任何协作学习算法在对抗和异质环境中都能实现的新的不可能定理的。
We study Byzantine collaborative learning, where $n$ nodes seek to collectively learn from each others' local data. The data distribution may vary from one node to another. No node is trusted, and $f < n$ nodes can behave arbitrarily. We prove that collaborative learning is equivalent to a new form of agreement, which we call averaging agreement. In this problem, nodes start each with an initial vector and seek to approximately agree on a common vector, which is close to the average of honest nodes' initial vectors. We present two asynchronous solutions to averaging agreement, each we prove optimal according to some dimension. The first, based on the minimum-diameter averaging, requires $ n \geq 6f+1$, but achieves asymptotically the best-possible averaging constant up to a multiplicative constant. The second, based on reliable broadcast and coordinate-wise trimmed mean, achieves optimal Byzantine resilience, i.e., $n \geq 3f+1$. Each of these algorithms induces an optimal Byzantine collaborative learning protocol. In particular, our equivalence yields new impossibility theorems on what any collaborative learning algorithm can achieve in adversarial and heterogeneous environments.