论文标题

基于投影方法的激光雷达点云处理:一种比较

LiDAR point-cloud processing based on projection methods: a comparison

论文作者

Yang, Guidong, Mentasti, Simone, Bersani, Mattia, Wang, Yafei, Braghin, Francesco, Cheli, Federico

论文摘要

准确而快速的响应感知系统对于自动驾驶汽车安全运行至关重要。 3D对象检测方法处理LIDAR传感器给出的点云,以提供每个检测的准确深度和位置信息,以及其尺寸和分类。然后,该信息用于跟踪自动驾驶汽车周围环境中的车辆和其他障碍物,并为保证避免碰撞和运动计划的控制装置提供了控制装置。如今,对象检测系统可以分为两个主要类别。第一个是基于几何的,它使用3D点上的几何和形态操作来检索障碍物。秒是基于深度学习的,它处理3D点或对3D Point-Cloud的详细说明,并采用深度学习技术来检索一组障碍。本文介绍了这两种方法之间的比较,并在真正的自动驾驶汽车上介绍了每个班级的一个实现。通过在Monza Eni电路中进行的实验测试评估了算法估计值的准确性。自我车辆的位置和障碍物由带有RTK校正的GPS传感器给出,这确保了比较的准确地面真相。这两种算法均已在ROS上实现,并在消费者笔记本电脑上运行。

An accurate and rapid-response perception system is fundamental for autonomous vehicles to operate safely. 3D object detection methods handle point clouds given by LiDAR sensors to provide accurate depth and position information for each detection, together with its dimensions and classification. The information is then used to track vehicles and other obstacles in the surroundings of the autonomous vehicle, and also to feed control units that guarantee collision avoidance and motion planning. Nowadays, object detection systems can be divided into two main categories. The first ones are the geometric based, which retrieve the obstacles using geometric and morphological operations on the 3D points. The seconds are the deep learning-based, which process the 3D points, or an elaboration of the 3D point-cloud, with deep learning techniques to retrieve a set of obstacles. This paper presents a comparison between those two approaches, presenting one implementation of each class on a real autonomous vehicle. Accuracy of the estimates of the algorithms has been evaluated with experimental tests carried in the Monza ENI circuit. The position of the ego vehicle and the obstacle is given by GPS sensors with RTK correction, which guarantees an accurate ground truth for the comparison. Both algorithms have been implemented on ROS and run on a consumer laptop.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源