论文标题

学习通过元软标签校正器净化嘈杂标签

Learning to Purify Noisy Labels via Meta Soft Label Corrector

论文作者

Wu, Yichen, Shu, Jun, Xie, Qi, Zhao, Qian, Meng, Deyu

论文摘要

最近的深度神经网络(DNNS)可以轻松地过度拟合具有嘈杂标签的偏置训练数据。标签校正策略通常用于通过设计一种可疑的嘈杂标签然后纠正它们的方法来减轻此问题。当前纠正损坏标签的方法通常需要某些预定义的标签校正规则或手动预设超参数。这些固定的设置使实际上很难应用,因为准确的标签校正通常与混凝土问题,训练数据和隐藏在训练过程的动态迭代中的时间信息相关。为了解决这个问题,我们提出了一个元学习模型,该模型可以在无噪声元数据的指导下通过元梯度下降步骤估算软标签。通过将标签校正过程视为元过程,并使用元学习器自动纠正标签,我们可以根据当前的训练问题而没有手动预设超级参数。此外,我们的方法是模型不合时式,我们可以轻松将其与任何其他现有模型结合在一起。与当前的SOTA标签校正策略相比,全面的实验证实了我们方法在合成和现实世界中具有嘈杂标签的优势。

Recent deep neural networks (DNNs) can easily overfit to biased training data with noisy labels. Label correction strategy is commonly used to alleviate this issue by designing a method to identity suspected noisy labels and then correct them. Current approaches to correcting corrupted labels usually need certain pre-defined label correction rules or manually preset hyper-parameters. These fixed settings make it hard to apply in practice since the accurate label correction usually related with the concrete problem, training data and the temporal information hidden in dynamic iterations of training process. To address this issue, we propose a meta-learning model which could estimate soft labels through meta-gradient descent step under the guidance of noise-free meta data. By viewing the label correction procedure as a meta-process and using a meta-learner to automatically correct labels, we could adaptively obtain rectified soft labels iteratively according to current training problems without manually preset hyper-parameters. Besides, our method is model-agnostic and we can combine it with any other existing model with ease. Comprehensive experiments substantiate the superiority of our method in both synthetic and real-world problems with noisy labels compared with current SOTA label correction strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源