论文标题

使用具有计算特异性(图片)的相成像的未标记神经突动力学的多尺度测定

Multiscale assay of unlabeled neurite dynamics using phase imaging with computational specificity (PICS)

论文作者

Kandel, Mikhail E., Kim, Eunjae, Lee, Young Jae, Tracy, Gregory, Chung, Hee Jung, Popescu, Gabriel

论文摘要

原发性神经元培养物已被广泛用于研究神经元的形态,神经生理学,神经退行性过程以及学习和记忆的突触可塑性的分子机制。然而,神经元的独特行为特性使它们具有挑战性研究 - 表型差异表示为神经元树博化的细微变化,而不是容易易于测定的特征,例如细胞计数。分析形态,生长和细胞内转运的需求激发了越来越复杂的显微镜和图像分析技术的发展。由于其高对比度,高特异性输出,许多测定依赖于共聚焦荧光显微镜,遗传方法或抗体染色技术。这些方法通常会限制测量定量动态活性(例如细胞内转运和生长)的能力。在这项工作中,我们通过通过定量相成像和深卷积神经网络估算相关的荧光信号来描述一种具有抗体染色特异性的无标签活细胞成像的方法。然后,该计算推断的荧光图像被用于生成语义分割图,并注释活的未标记神经培养物的亚细胞隔室。这些合成的荧光图进一步应用于研究海马神经元的延时发展,突出了细胞干质量产生与细胞核和神经突内动态转运活性之间的关系。我们的实施提供了一种高通量策略,以高特异性动态地分析神经网络树自动化,并且没有典型的光毒性和与荧光标记相关的光漂白限制。

Primary neuronal cultures have been widely used to study neuronal morphology, neurophysiology, neurodegenerative processes, and molecular mechanism of synaptic plasticity underlying learning and memory. Yet, the unique behavioral properties of neurons make them challenging to study - with phenotypic differences expressed as subtle changes in neuronal arborization rather than easy to assay features such as cell count. The need to analyze morphology, growth, and intracellular transport has motivated the development of increasingly sophisticated microscopes and image analysis techniques. Due to its high-contrast, high-specificity output, many assays rely on confocal fluorescence microscopy, genetic methods, or antibody staining techniques. These approaches often limit the ability to measure quantitatively dynamic activity such as intracellular transport and growth. In this work, we describe a method for label-free live-cell cell imaging with antibody staining specificity by estimating the associated fluorescent signals via quantitative phase imaging and deep convolutional neural networks. This computationally inferred fluorescence image is then used to generate a semantic segmentation map, annotating subcellular compartments of live unlabeled neural cultures. These synthetic fluorescence maps were further applied to study the time-lapse development of hippocampal neurons, highlighting the relationships between the cellular dry mass production and the dynamic transport activity within the nucleus and neurites. Our implementation provides a high-throughput strategy to analyze neural network arborization dynamically, with high specificity and without the typical phototoxicity and photobleaching limitations associated with fluorescent markers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源