论文标题

糖尿病性视网膜病变分级的补丁级和图像级注释的强大协作学习

Robust Collaborative Learning of Patch-level and Image-level Annotations for Diabetic Retinopathy Grading from Fundus Image

论文作者

Yang, Yehui, Shang, Fangxin, Wu, Binghong, Yang, Dalu, Wang, Lei, Xu, Yanwu, Zhang, Wensheng, Zhang, Tianzhu

论文摘要

眼底图像的糖尿病性视网膜病(DR)分级引起了对学术和工业社区的兴趣。大多数卷积神经网络(CNN)算法通过图像级注释将DR分级视为分类任务。但是,这些算法尚未完全探索与DR相关病变中的有价值信息。在本文中,我们提出了一个强大的框架,该框架合作利用了补丁级和图像级注释,以进行严重性分级。通过端到端的优化,该框架可以双向交换细粒病变和图像水平等级信息。结果,它为DR分级利用了更多的判别特征。所提出的框架比最近的最新算法和三位具有超过9年经验的临床眼科医生表现出更好的性能。通过在不同分布(例如标签和相机)的数据集上测试,我们证明,在面对现实世界中通常存在的图像质量和分布变化时,我们的算法是可靠的。我们通过广泛的消融研究检查提出的框架,以表明每种动机的有效性和必要性。该代码和一些有价值的注释现在已公开可用。

Diabetic retinopathy (DR) grading from fundus images has attracted increasing interest in both academic and industrial communities. Most convolutional neural network (CNN) based algorithms treat DR grading as a classification task via image-level annotations. However, these algorithms have not fully explored the valuable information in the DR-related lesions. In this paper, we present a robust framework, which collaboratively utilizes patch-level and image-level annotations, for DR severity grading. By an end-to-end optimization, this framework can bi-directionally exchange the fine-grained lesion and image-level grade information. As a result, it exploits more discriminative features for DR grading. The proposed framework shows better performance than the recent state-of-the-art algorithms and three clinical ophthalmologists with over nine years of experience. By testing on datasets of different distributions (such as label and camera), we prove that our algorithm is robust when facing image quality and distribution variations that commonly exist in real-world practice. We inspect the proposed framework through extensive ablation studies to indicate the effectiveness and necessity of each motivation. The code and some valuable annotations are now publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源