论文标题

基于设计的不确定性

Design-Based Uncertainty for Quasi-Experiments

论文作者

Rambachan, Ashesh, Roth, Jonathan

论文摘要

基于设计的不确定性框架经常用于(有条件地)随机分配的设置。本文开发了一个基于设计的框架,适合分析社会科学中的准实验环境,其中可以将治疗分配视为实现某些随机过程的实现,但人们担心未经观察的选择中的治疗。在我们的框架中,治疗是随机的,但是单位的接受治疗可能性可能有所不同,从而允许选择丰富的选择。我们提供的条件下,流行的准实验估计器的估计数对应于可解释的有限种群因果参数。我们表征了违反这些条件时出现的推理的偏见和扭曲。当对选择进行治疗时,这些结果可用于进行灵敏度分析。综上所述,我们的结果为准实验分析建立了一个严格的基础,该基础与经验研究人员讨论数据的变化的方式更紧密地保持一致。

Design-based frameworks of uncertainty are frequently used in settings where the treatment is (conditionally) randomly assigned. This paper develops a design-based framework suitable for analyzing quasi-experimental settings in the social sciences, in which the treatment assignment can be viewed as the realization of some stochastic process but there is concern about unobserved selection into treatment. In our framework, treatments are stochastic, but units may differ in their probabilities of receiving treatment, thereby allowing for rich forms of selection. We provide conditions under which the estimands of popular quasi-experimental estimators correspond to interpretable finite-population causal parameters. We characterize the biases and distortions to inference that arise when these conditions are violated. These results can be used to conduct sensitivity analyses when there are concerns about selection into treatment. Taken together, our results establish a rigorous foundation for quasi-experimental analyses that more closely aligns with the way empirical researchers discuss the variation in the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源