论文标题
用串联残留网络的多路复用超级元图设计和优化
Multiplexed Supercell Metasurface Design and Optimization with Tandem Residual Networks
论文作者
论文摘要
复杂的纳米光结构具有为一系列应用提供精美定制的光学响应的潜力。例如,在超级电池中排列的金属 - 胰蛋白 - 金属(MIM)元面积可以通过几何形状和材料选择来量身定制,以表现出各种吸收特性和谐振波长。然而,随着这种灵活性,经典设计范式很难有效地导航。为了克服这一挑战,我们在这里展示了一种串联残留网络方法,可以通过反设计有效地生成多重超级电池。通过在超过三亿个设计的设计空间中,使用具有数千个全波电磁模拟的训练数据集,深度学习模型可以准确地生成各种复杂的超级电池设计,给定频谱目标。除了逆设计之外,提出的方法还可以用于探索此类超细胞配置中宽带吸收和排放的结构 - 质地关系。因此,这项研究证明了具有深层神经网络的高维超级逆设计的可行性,该逆设计适用于复杂的纳米光子结构,该结构由可能显示耦合的多个亚基元素组成。
Complex nanophotonic structures hold the potential to deliver exquisitely tailored optical responses for a range of applications. Metal-insulator-metal (MIM) metasurfaces arranged in supercells, for instance, can be tailored by geometry and material choice to exhibit a variety of absorption properties and resonant wavelengths. With this flexibility, however, comes a vast space of design possibilities that classical design paradigms struggle to effectively navigate. To overcome this challenge, here we demonstrate a tandem residual network approach to efficiently generate multiplexed supercells through inverse design. By using a training dataset with several thousand full-wave electromagnetic simulations in a design space of over three trillion possible designs, the deep learning model can accurately generate a wide range of complex supercell designs given a spectral target. Beyond inverse design, the presented approach can also be used to explore the structure-property relationships of broadband absorption and emission in such supercell configurations. Thus, this study demonstrates the feasibility of high-dimensional supercell inverse design with deep neural networks that is applicable to complex nanophotonic structures composed of multiple subunit elements that may exhibit coupling.