论文标题

迪拉克(Dirac)构建Lorentz-Covariant量子力学的努力的整合

Integration of Dirac's Efforts to construct Lorentz-covariant Quantum Mechanics

论文作者

Kim, Young S., Noz, Marilyn E.

论文摘要

保罗·A·M·迪拉克(Paul A. M. Dirac)的终生努力是在洛伦兹协变世界中构建局部量子系统。 1927年,他指出,洛伦兹(Lorentz)融合图片中应包括时间能量不确定性。 1945年,他试图使用在空间和时间变量中定位的可正常的高斯函数来构建Lorentz组的表示。 1949年,他引入了自己的即时形式,以排除时间般的振荡。他还引入了Lorentz提升的轻锥坐标系。他同样在1949年,他说,不均匀的洛伦兹集团的谎言代数可以作为洛伦兹 - 居民世界的不确定性关系。可以整合这三篇论文以产生可以通过洛伦兹转换的谐波振荡器波函数。此外,迪拉克(Dirac)在1963年考虑了两个耦合振荡器,以为$ o(3,3,\,2)$ de Sitter Group的发电机得出Lie代数,该组有十个发电机。事实证明,这组可以与十个发电机签约与不均匀的洛伦兹集团,这构成了爱因斯坦洛伦兹 - 苏联世界中量子力学的基本对称性。

The lifelong efforts of Paul A. M. Dirac were to construct localized quantum systems in the Lorentz covariant world. In 1927, he noted that the time-energy uncertainty should be included in the Lorentz-covariant picture. In 1945, he attempted to construct a representation of the Lorentz group using a normalizable Gaussian function localized both in the space and time variables. In 1949, he introduced his instant form to exclude time-like oscillations. He also introduced the light-cone coordinate system for Lorentz boosts. Also in 1949, he stated the Lie algebra of the inhomogeneous Lorentz group can serve as the uncertainty relations in the Lorentz-covariant world. It is possible to integrate these three papers to produce the harmonic oscillator wave function which can be Lorentz-transformed. In addition, Dirac, in 1963, considered two coupled oscillators to derive the Lie algebra for the generators of the $O(3,\,2)$ de Sitter group, which has ten generators. It is proven possible to contract this group to the inhomogeneous Lorentz group with ten generators, which constitute the fundamental symmetry of quantum mechanics in Einstein's Lorentz-covariant world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源