论文标题

复杂性连续性在NP问题的公式中

Complexity continuum within Ising formulation of NP problems

论文作者

Kalinin, Kirill P., Berloff, Natalia G.

论文摘要

在经典的von Neumann体系结构上实现计算至上的一种有希望的方法,探索了经典和量子硬件作为Ising机器。对于某些相互作用矩阵类来说,伊辛·哈密顿(Ising Hamiltonian)的最小化是NP - 硬性问题,但并非所有问题实例都很难优化。我们建议使用“优化简单标准”来识别计算简单的实例。可以找到从自旋玻璃到k规范最大切割问题的各种模型的广泛模型的优化简单性。许多光学,光子和电子系统都是神经形态体系结构,可以自然运行以优化满足此标准的问题,因此,通常会选择此类问题来说明新Ising机器的计算优势。我们通过分析循环耦合矩阵,进一步探测了稀疏和致密模型的中间复杂性,可以“重新接线”以引入更大的复杂性。一种令人信服的方法,用于区分同一NP硬性问题中的简单和硬实例,这可能是开发标准化程序以评估新兴物理模拟器和物理启发算法的起点。

A promising approach to achieve computational supremacy over the classical von Neumann architecture explores classical and quantum hardware as Ising machines. The minimisation of the Ising Hamiltonian is known to be NP-hard problem for certain interaction matrix classes, yet not all problem instances are equivalently hard to optimise. We propose to identify computationally simple instances with an `optimisation simplicity criterion'. Such optimisation simplicity can be found for a wide range of models from spin glasses to k-regular maximum cut problems. Many optical, photonic, and electronic systems are neuromorphic architectures that can naturally operate to optimise problems satisfying this criterion and, therefore, such problems are often chosen to illustrate the computational advantages of new Ising machines. We further probe an intermediate complexity for sparse and dense models by analysing circulant coupling matrices, that can be `rewired' to introduce greater complexity. A compelling approach for distinguishing easy and hard instances within the same NP-hard class of problems can be a starting point in developing a standardised procedure for the performance evaluation of emerging physical simulators and physics-inspired algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源