论文标题
原子上稀薄的硝化硼作为金属增强荧光的理想垫片
Atomically Thin Boron Nitride as an Ideal Spacer for Metal-Enhanced Fluorescence
论文作者
论文摘要
金属增强的荧光(MEF)大大增强了各种应用的发光,但其性能在很大程度上取决于荧光团和等离子系统之间的介电间隔。生产具有优化厚度的无缺陷垫片具有优化厚度,其准确性可以使可重复使用的性能而不会影响增强,这仍然具有挑战性。在这项研究中,我们证明了原子上的薄六角硼(BN)用作理想的MEF垫片,这是由于其比传统的介电薄膜的多重优势。以若丹明6g为代表性的荧光团,它在很大程度上改善了增强因子(高达〜95+-5),灵敏度(10^-8 m),可重复性和可重复性(〜90%的等离激元活性在30°C在350°C的空气中保留在30°C的循环后保留)。这可以归因于其二维结构,原子水平的厚度控制,无缺陷的质量,对芳香荧光团的高亲和力,良好的热稳定性和出色的不渗透性。原子上的BN垫片可能会增加MEF在不同领域和行业中的使用。
The metal-enhanced fluorescence (MEF) considerably enhances the luminescence for various applications, but its performance largely depends on the dielectric spacer between the fluorophore and plasmonic system. It is still challenging to produce a defect-free spacer having an optimized thickness with a subnanometer accuracy that enables reusability without affecting the enhancement. In this study, we demonstrate the use of atomically thin hexagonal boron nitride (BN) as an ideal MEF spacer owing to its multifold advantages over the traditional dielectric thin films. With rhodamine 6G as a representative fluorophore, it largely improves the enhancement factor (up to ~95+-5), sensitivity (10^-8 M), reproducibility, and reusability (~90% of the plasmonic activity is retained after 30 cycles of heating at 350 °C in air) of MEF. This can be attributed to its two-dimensional structure, thickness control at the atomic level, defect-free quality, high affinities to aromatic fluorophores, good thermal stability, and excellent impermeability. The atomically thin BN spacers could increase the use of MEF in different fields and industries.