论文标题
在不一致的操作下,多层相干状态的确定性转换
Deterministic transformations of multilevel coherent states under incoherence-preserving operations
论文作者
论文摘要
从量子状态的“叠加”中出现的量子相干性被广泛用于各种信息处理任务中。最近,多级量子相干性的资源理论引起了极大的关注。在本文中,我们主要通过在多层次连贯性的理论框架中的自由操作来研究资源纯状态的确定性转换。我们证明,任何两个多级相干资源纯净状态都可以通过完全正面和痕迹的非差异$ k $ -coherence-coherence-conerence-Preserverving映射与非零概率相互关联。同时,我们介绍了在$ k $ - coherence paroserving操作下的两个多级相干资源状态的相互转换的状况。此外,我们得到的是,在多级连贯性的资源理论框架中,没有资源状态是孤立的,也就是说,给定一个多级相干状态$ |ψ\ rangle $,还有另一个多级相干状态$ | ϕ \ rangle $和$ k $ coherence-coherence-coherence-coherence-coherence-coherence-coherence-preServing Operative $λ_K$,例如$λ_k$λ_k$λ_k$λ_k$λ_k$λ_ $λ_K(| ϕ \ rangle)= |ψ\ rangle $。
Quantum coherence, emerging from the 'superposition' of quantum states, is widely used in various information processing tasks. Recently, the resource theory of multilevel quantum coherence is attracting substantial attention. In this paper, we mainly study the deterministic transformations of resource pure states via free operations in the theoretical framework for multilevel coherence. We prove that any two multilevel coherent resource pure states can be interconverted with a nonzero probability via a completely positive and trace non-increasing $k$-coherence-preserving map. Meanwhile, we present the condition of the interconversions of two multilevel coherent resource pure states under $k$-coherence-preserving operations. In addition, we obtain that in the resource-theoretic framework of multilevel coherence, no resource state is isolated, that is, given a multilevel coherent pure state $|ψ\rangle$, there exists another multilevel coherent pure state $|ϕ\rangle$ and a $k$-coherence-preserving operation $Λ_k$, such that $Λ_k(|ϕ\rangle)=|ψ\rangle$.