论文标题
两种温度模型
Two temperature Ising Model
论文作者
论文摘要
我们引入了两个温度的ISING模型,作为超级遗传临界现象的原型。该模型由零磁场的两个温度($ t_1,t_2 $)描述。为了预测相图并通过数值估计指数,我们开发了大都市和Swendsen-Wang Monte Carlo方法。我们观察到存在一个非平凡的临界线,分开有序和无序的相位。我们提出了相图中临界线的分析方程。我们对关键指数的数值估计表明,临界线上的所有点都属于普通的伊辛普遍性类别。
We introduce a two-temperature Ising model as a prototype of superstatistic critical phenomena. The model is described by two temperatures ($T_1,T_2$) in zero magnetic field. To predict the phase diagram and numerically estimate the exponents, we develop Metropolis and Swendsen-Wang Monte Carlo method. We observe that there is a non-trivial critical line, separating ordered and disordered phases. We propose an analytic equation for the critical line in the phase diagram. Our numerical estimation of the critical exponents illustrates that all points on the critical line belong to the ordinary Ising universality class.