论文标题

RGB-D显着对象检测:调查

RGB-D Salient Object Detection: A Survey

论文作者

Zhou, Tao, Fan, Deng-Ping, Cheng, Ming-Ming, Shen, Jianbing, Shao, Ling

论文摘要

显着对象检测(SOD)模拟了人类视觉感知系统以在场景中定位最有吸引力的对象,已广泛应用于各种计算机视觉任务。现在,随着深度传感器的出现,很容易捕获深度图,并带有富裕的空间信息,可以捕获SOD的性能。尽管在过去几年中提出了各种具有有前途的性能的基于RGB-D的SOD模型,但仍然缺乏对这些主题的这些模型和挑战的深入了解。在本文中,我们从各个角度提供了基于RGB-D的SOD模型的全面调查,并详细介绍了相关的基准数据集。此外,考虑到光场还可以提供深度图,我们还从该域中回顾了SOD模型和流行的基准数据集。此外,为了研究现有模型的SOD能力,我们进行了全面的评估,以及对几种代表性RGB-D SOD模型的基于属性的评估。最后,我们讨论了基于RGB-D的SOD的几个挑战和开放方向,以供未来的研究。将在https://github.com/taozh2017/rgbdsodsurvey上公开提供所有收集的模型,基准数据集,源代码链接,用于基于属性的评估的数据集以及评估代码

Salient object detection (SOD), which simulates the human visual perception system to locate the most attractive object(s) in a scene, has been widely applied to various computer vision tasks. Now, with the advent of depth sensors, depth maps with affluent spatial information that can be beneficial in boosting the performance of SOD, can easily be captured. Although various RGB-D based SOD models with promising performance have been proposed over the past several years, an in-depth understanding of these models and challenges in this topic remains lacking. In this paper, we provide a comprehensive survey of RGB-D based SOD models from various perspectives, and review related benchmark datasets in detail. Further, considering that the light field can also provide depth maps, we review SOD models and popular benchmark datasets from this domain as well. Moreover, to investigate the SOD ability of existing models, we carry out a comprehensive evaluation, as well as attribute-based evaluation of several representative RGB-D based SOD models. Finally, we discuss several challenges and open directions of RGB-D based SOD for future research. All collected models, benchmark datasets, source code links, datasets constructed for attribute-based evaluation, and codes for evaluation will be made publicly available at https://github.com/taozh2017/RGBDSODsurvey

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源