论文标题
雾化的物联网系统中的绿色卸载:在线视角整合学习和控制
Green Offloading in Fog-Assisted IoT Systems: An Online Perspective Integrating Learning and Control
论文作者
论文摘要
在雾化的物联网系统中,通常是将任务从物联网设备到附近的雾节节点以减少任务处理潜伏期和能源消耗的常见做法。但是,在线节能方案的设计仍然是一个开放的问题,因为系统动态(例如处理能力和传输速率)的各种不确定性。此外,决策过程受到雾节和物联网设备的资源限制的限制,使设计更加复杂。在本文中,我们通过未知系统动力学作为组合多臂强盗(CMAB)问题制定了这样的任务卸载问题,并在时间平均的能源消耗中对长期限制进行了长期限制。通过有效地集成在线学习和在线控制,我们提出了一个\ textit {学习辅助绿色卸载}(Lago)方案。在Lago中,我们采用强盗学习方法来处理剥削探索的权衡,并利用虚拟队列技术来处理长期约束。我们的理论分析表明,Lago可以通过有限的时间范围内的可调节性均值遗憾来减少平均任务潜伏期,并满足长期时间平均的能量限制。我们进行广泛的模拟以验证这种理论结果。
In fog-assisted IoT systems, it is a common practice to offload tasks from IoT devices to their nearby fog nodes to reduce task processing latencies and energy consumptions. However, the design of online energy-efficient scheme is still an open problem because of various uncertainties in system dynamics such as processing capacities and transmission rates. Moreover, the decision-making process is constrained by resource limits on fog nodes and IoT devices, making the design even more complicated. In this paper, we formulate such a task offloading problem with unknown system dynamics as a combinatorial multi-armed bandit (CMAB) problem with long-term constraints on time-averaged energy consumptions. Through an effective integration of online learning and online control, we propose a \textit{Learning-Aided Green Offloading} (LAGO) scheme. In LAGO, we employ bandit learning methods to handle the exploitation-exploration tradeoff and utilize virtual queue techniques to deal with the long-term constraints. Our theoretical analysis shows that LAGO can reduce the average task latency with a tunable sublinear regret bound over a finite time horizon and satisfy the long-term time-averaged energy constraints. We conduct extensive simulations to verify such theoretical results.