论文标题

$ K(1460)$共振的三体模型

Three-body model for $K(1460)$ resonance

论文作者

Filikhin, I., Kezerashvili, R. Ya., Suslov, V. M., Tsiklauri, Sh. M., Vlahovic, B.

论文摘要

$ K(1460)$共振的三体$ kk \ bar k $型号是根据配置空间中的Faddeev方程开发的。单渠道方法正在考虑中性和带电ko的质量的差异。已经证明,根据$ k^0k^0 {\ bar k}^0 $,$ k^0K^0K^+k^ - $ k^+k^+k^0 {\ b k^0 {\ bar k}^0 $ k^0 {\ k^0 $ k^+k^+k^+k^+k^+k^ - $ netial countment,$ k^0k^0 $,$ k^0k^+k^+k^ - $ netial countment a $ k(1460)$ resonance的质量在1460 meV左右占据位置。该计算是用两组$ kk $和$ k \ b k $现象学潜力执行的,其中后一种相互作用对于Isospin Singlet和Triplet状态而言相同。研究了$ kk $相互作用对$ kk \ bar k $系统质量的排斥作用,并评估了质量极化的效果。首次考虑$ K(1460)$共振的库仑交互。 $ K $(1460)共振的质量分裂评估为10 MEV,并考虑到库仑力。具有$ k \ bar k $电位的三体模型,它具有不同的Isospin Singlet和Triplet零件的强度,这些零件还考虑到获得准结合的三体状态的条件。我们的结果与$ K(1460)$共振的实验质量达成了合理的同意。

The three-body $KK\bar K$ model for the $K(1460)$ resonance is developed on the basis of the Faddeev equations in configuration space. A single-channel approach is using with taking into account the difference of masses of neutral and charged kaons. It is demonstrated that a splitting the mass of the $K(1460)$ resonance takes a place around 1460 MeV according to $K^0K^0{\bar K}^0$, $K^0K^+K^-$ and $K^+K^0{\bar K}^0$, $ K^+K^+K^-$ neutral and charged particle configurations, respectively. The calculations are performed with two sets of $KK$ and $K\bar K$ phenomenological potentials, where the latter interaction is considered the same for the isospin singlet and triplet states. The effect of repulsion of the $KK$ interaction on the mass of the $KK\bar K$ system is studied and the effect of the mass polarization is evaluated. The first time the Coulomb interaction for description of the $K(1460)$ resonance is considered. The mass splitting in the $K$(1460) resonances is evaluated to be in range of 10 MeV with taking into account the Coulomb force. The three-body model with the $K\bar K$ potential, which has the different strength of the isospin singlet and triplet parts that are related by the condition of obtaining a quasi-bound three-body state is also considered. Our results are in reasonable agreement with the experimental mass of the $K(1460)$ resonance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源